Definition 28.12.1. Let $X$ be a locally Noetherian scheme. Let $k \geq 0$.
We say $X$ is regular in codimension $k$, or we say $X$ has property $(R_ k)$ if for every $x \in X$ we have
\[ \dim (\mathcal{O}_{X, x}) \leq k \Rightarrow \mathcal{O}_{X, x}\text{ is regular} \]We say $X$ has property $(S_ k)$ if for every $x \in X$ we have $\text{depth}(\mathcal{O}_{X, x}) \geq \min (k, \dim (\mathcal{O}_{X, x}))$.
Comments (0)