Definition 30.11.1. Let X be a locally Noetherian scheme. Let \mathcal{F} be a coherent \mathcal{O}_ X-module. Let k \geq 0 be an integer.
We say \mathcal{F} has depth k at a point x of X if \text{depth}_{\mathcal{O}_{X, x}}(\mathcal{F}_ x) = k.
We say X has depth k at a point x of X if \text{depth}(\mathcal{O}_{X, x}) = k.
We say \mathcal{F} has property (S_ k) if
\text{depth}_{\mathcal{O}_{X, x}}(\mathcal{F}_ x) \geq \min (k, \dim (\text{Supp}(\mathcal{F}_ x)))for all x \in X.
We say X has property (S_ k) if \mathcal{O}_ X has property (S_ k).
Comments (1)
Comment #948 by correction_bot on