Lemma 28.12.4. Let $X$ be a locally Noetherian scheme. Then $X$ is reduced if and only if $X$ has properties $(S_1)$ and $(R_0)$.
Proof. This is Algebra, Lemma 10.157.3. $\square$
Lemma 28.12.4. Let $X$ be a locally Noetherian scheme. Then $X$ is reduced if and only if $X$ has properties $(S_1)$ and $(R_0)$.
Proof. This is Algebra, Lemma 10.157.3. $\square$
Comments (0)