Lemma 33.6.5. Let $k$ be a field of characteristic $p > 0$. Let $X$ be a scheme over $k$. Let $x \in X$. The following are equivalent

1. $X$ is geometrically reduced at $x$,

2. $\mathcal{O}_{X_{k'}, x'}$ is reduced for every finite purely inseparable field extension $k'$ of $k$ and $x' \in X_{k'}$ the unique point lying over $x$,

3. $\mathcal{O}_{X_{k^{1/p}}, x'}$ is reduced for $x' \in X_{k^{1/p}}$ the unique point lying over $x$, and

4. $\mathcal{O}_{X_{k^{perf}}, x'}$ is reduced for $x' \in X_{k^{perf}}$ the unique point lying over $x$.

Proof. Note that if $k \subset k'$ is purely inseparable, then $X_{k'} \to X$ induces a homeomorphism on underlying topological spaces, see Algebra, Lemma 10.46.7. Whence the uniqueness of $x'$ lying over $x$ mentioned in the statement. Moreover, in this case $\mathcal{O}_{X_{k'}, x'} = \mathcal{O}_{X, x} \otimes _ k k'$. Hence the lemma follows from Lemma 33.6.2 above and Algebra, Lemma 10.44.3. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).