Lemma 35.28.4. The property $\mathcal{P}(f)=$“$f$ is universally open” is fppf local on the source.
Proof. Let $f : X \to Y$ be a morphism of schemes. Let $\{ X_ i \to X\} _{i \in I}$ be an fppf covering. Denote $f_ i : X_ i \to X$ the compositions. We have to show that $f$ is universally open if and only if each $f_ i$ is universally open. If $f$ is universally open, then also each $f_ i$ is universally open since the maps $X_ i \to X$ are universally open and compositions of universally open morphisms are universally open (Morphisms, Lemmas 29.25.10 and 29.23.3). Conversely, assume each $f_ i$ is universally open. Let $Y' \to Y$ be a morphism of schemes. Denote $X' = Y' \times _ Y X$ and $X'_ i = Y' \times _ Y X_ i$. Note that $\{ X_ i' \to X'\} _{i \in I}$ is an fppf covering also. The morphisms $f'_ i : X_ i' \to Y'$ are open by assumption. Hence by the Lemma 35.28.3 above we conclude that $f' : X' \to Y'$ is open as desired. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)