Lemma 29.25.10. A flat morphism locally of finite presentation is universally open.

**Proof.**
This follows from Lemmas 29.25.9 and Lemma 29.23.2 above. We can also argue directly as follows.

Let $f : X \to S$ be flat locally of finite presentation. To show $f$ is open it suffices to show that we may cover $X$ by open affines $X = \bigcup U_ i$ such that $U_ i \to S$ is open. By definition we may cover $X$ by affine opens $U_ i \subset X$ such that each $U_ i$ maps into an affine open $V_ i \subset S$ and such that the induced ring map $\mathcal{O}_ S(V_ i) \to \mathcal{O}_ X(U_ i)$ is of finite presentation. Thus $U_ i \to V_ i$ is open by Algebra, Proposition 10.40.8. The lemma follows. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: