## Tag `01U2`

## 28.24. Flat morphisms

Flatness is one of the most important technical tools in algebraic geometry. In this section we introduce this notion. We intentionally limit the discussion to straightforward observations, apart from Lemma 28.24.9. A very important class of results, namely criteria for flatness, are discussed in Algebra, Sections 10.98, 10.100, 10.127, and More on Morphisms, Section 36.16. There is a chapter dedicated to advanced material on flat morphisms of schemes, namely More on Flatness, Section 37.1.

Recall that a module $M$ over a ring $R$ is

flatif the functor $-\otimes_R M : \text{Mod}_R \to \text{Mod}_R$ is exact. A ring map $R \to A$ is said to beflatif $A$ is flat as an $R$-module. See Algebra, Definition 10.38.1.Definition 28.24.1. Let $f : X \to S$ be a morphism of schemes. Let $\mathcal{F}$ be a quasi-coherent sheaf of $\mathcal{O}_X$-modules.

- We say $f$ is
flat at a point $x \in X$if the local ring $\mathcal{O}_{X, x}$ is flat over the local ring $\mathcal{O}_{S, f(x)}$.- We say that $\mathcal{F}$ is
flat over $S$ at a point $x \in X$if the stalk $\mathcal{F}_x$ is a flat $\mathcal{O}_{S, f(x)}$-module.- We say $f$ is
flatif $f$ is flat at every point of $X$.- We say that $\mathcal{F}$ is
flat over $S$if $\mathcal{F}$ is flat over $S$ at every point $x$ of $X$.

Thus we see that $f$ is flat if and only if the structure sheaf $\mathcal{O}_X$ is flat over $S$.

Lemma 28.24.2. Let $f : X \to S$ be a morphism of schemes. Let $\mathcal{F}$ be a quasi-coherent sheaf of $\mathcal{O}_X$-modules. The following are equivalent

- The sheaf $\mathcal{F}$ is flat over $S$.
- For every affine opens $U \subset X$, $V \subset S$ with $f(U) \subset V$ the $\mathcal{O}_S(V)$-module $\mathcal{F}(U)$ is flat.
- There exists an open covering $S = \bigcup_{j \in J} V_j$ and open coverings $f^{-1}(V_j) = \bigcup_{i \in I_j} U_i$ such that each of the modules $\mathcal{F}|_{U_i}$ is flat over $V_j$, for all $j\in J, i\in I_j$.
- There exists an affine open covering $S = \bigcup_{j \in J} V_j$ and affine open coverings $f^{-1}(V_j) = \bigcup_{i \in I_j} U_i$ such that $\mathcal{F}(U_i)$ is a flat $\mathcal{O}_S(V_j)$-module, for all $j\in J, i\in I_j$.
Moreover, if $\mathcal{F}$ is flat over $S$ then for any open subschemes $U \subset X$, $V \subset S$ with $f(U) \subset V$ the restriction $\mathcal{F}|_U$ is flat over $V$.

Proof.Let $R \to A$ be a ring map. Let $M$ be an $A$-module. If $M$ is $R$-flat, then for all primes $\mathfrak q$ the module $M_{\mathfrak q}$ is flat over $R_{\mathfrak p}$ with $\mathfrak p$ the prime of $R$ lying under $\mathfrak q$. Conversely, if $M_{\mathfrak q}$ is flat over $R_{\mathfrak p}$ for all primes $\mathfrak q$ of $A$, then $M$ is flat over $R$. See Algebra, Lemma 10.38.19. This equivalence easily implies the statements of the lemma. $\square$Lemma 28.24.3. Let $f : X \to S$ be a morphism of schemes. The following are equivalent

- The morphism $f$ is flat.
- For every affine opens $U \subset X$, $V \subset S$ with $f(U) \subset V$ the ring map $\mathcal{O}_S(V) \to \mathcal{O}_X(U)$ is flat.
- There exists an open covering $S = \bigcup_{j \in J} V_j$ and open coverings $f^{-1}(V_j) = \bigcup_{i \in I_j} U_i$ such that each of the morphisms $U_i \to V_j$, $j\in J, i\in I_j$ is flat.
- There exists an affine open covering $S = \bigcup_{j \in J} V_j$ and affine open coverings $f^{-1}(V_j) = \bigcup_{i \in I_j} U_i$ such that $\mathcal{O}_S(V_j) \to \mathcal{O}_X(U_i)$ is flat, for all $j\in J, i\in I_j$.
Moreover, if $f$ is flat then for any open subschemes $U \subset X$, $V \subset S$ with $f(U) \subset V$ the restriction $f|_U : U \to V$ is flat.

Proof.This is a special case of Lemma 28.24.2 above. $\square$Lemma 28.24.4. Let $X \to Y \to Z$ be morphisms of schemes. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module. Let $x \in X$ with image $y$ in $Y$. If $\mathcal{F}$ is flat over $Y$ at $x$, and $Y$ is flat over $Z$ at $y$, then $\mathcal{F}$ is flat over $Z$ at $x$.

Proof.See Algebra, Lemma 10.38.4. $\square$Lemma 28.24.5. The composition of flat morphisms is flat.

Proof.This is a special case of Lemma 28.24.4. $\square$Lemma 28.24.6. Let $f : X \to S$ be a morphism of schemes. Let $\mathcal{F}$ be a quasi-coherent sheaf of $\mathcal{O}_X$-modules. Let $g : S' \to S$ be a morphism of schemes. Denote $g' : X' = X_{S'} \to X$ the projection. Let $x' \in X'$ be a point with image $x = g(x') \in X$. If $\mathcal{F}$ is flat over $S$ at $x$, then $(g')^*\mathcal{F}$ is flat over $S'$ at $x'$. In particular, if $\mathcal{F}$ is flat over $S$, then $(g')^*\mathcal{F}$ is flat over $S'$.

Proof.See Algebra, Lemma 10.38.7. $\square$Lemma 28.24.7. The base change of a flat morphism is flat.

Proof.This is a special case of Lemma 28.24.6. $\square$Lemma 28.24.8. Let $f : X \to S$ be a flat morphism of schemes. Then generalizations lift along $f$, see Topology, Definition 5.19.3.

Proof.See Algebra, Section 10.40. $\square$Lemma 28.24.9. A flat morphism locally of finite presentation is universally open.

Proof.This follows from Lemmas 28.24.8 and Lemma 28.22.2 above. We can also argue directly as follows.Let $f : X \to S$ be flat locally of finite presentation. To show $f$ is open it suffices to show that we may cover $X$ by open affines $X = \bigcup U_i$ such that $U_i \to S$ is open. By definition we may cover $X$ by affine opens $U_i \subset X$ such that each $U_i$ maps into an affine open $V_i \subset S$ and such that the induced ring map $\mathcal{O}_S(V_i) \to \mathcal{O}_X(U_i)$ is of finite presentation. Thus $U_i \to V_i$ is open by Algebra, Proposition 10.40.8. The lemma follows. $\square$

Lemma 28.24.10. Let $f : X \to Y$ be a morphism of schemes. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module. Assume $f$ locally finite presentation, $\mathcal{F}$ of finite type, $X = \text{Supp}(\mathcal{F})$, and $\mathcal{F}$ flat over $Y$. Then $f$ is universally open.

Proof.By Lemmas 28.24.6, 28.20.4, and 28.5.3 the assumptions are preserved under base change. By Lemma 28.22.2 it suffices to show that generalizations lift along $f$. This follows from Algebra, Lemma 10.40.12. $\square$Lemma 28.24.11. Let $f : X \to Y$ be a quasi-compact, surjective, flat morphism. A subset $T \subset Y$ is open (resp. closed) if and only $f^{-1}(T)$ is open (resp. closed). In other words, $f$ is a submersive morphism.

Proof.The question is local on $Y$, hence we may assume that $Y$ is affine. In this case $X$ is quasi-compact as $f$ is quasi-compact. Write $X = X_1 \cup \ldots \cup X_n$ as a finite union of affine opens. Then $f' : X' = X_1 \amalg \ldots \amalg X_n \to Y$ is a surjective flat morphism of affine schemes. Note that for $T \subset Y$ we have $(f')^{-1}(T) = f^{-1}(T) \cap X_1 \amalg \ldots \amalg f^{-1}(T) \cap X_n$. Hence, $f^{-1}(T)$ is open if and only if $(f')^{-1}(T)$ is open. Thus we may assume both $X$ and $Y$ are affine.Let $f : \mathop{\rm Spec}(B) \to \mathop{\rm Spec}(A)$ be a surjective morphism of affine schemes corresponding to a flat ring map $A \to B$. Suppose that $f^{-1}(T)$ is closed, say $f^{-1}(T) = V(I)$ for $I \subset A$ an ideal. Then $T = f(f^{-1}(T)) = f(V(I))$ is the image of $\mathop{\rm Spec}(A/I) \to \mathop{\rm Spec}(B)$ (here we use that $f$ is surjective). On the other hand, generalizations lift along $f$ (Lemma 28.24.8). Hence by Topology, Lemma 5.19.5 we see that $Y \setminus T = f(X \setminus f^{-1}(T))$ is stable under generalization. Hence $T$ is stable under specialization (Topology, Lemma 5.19.2). Thus $T$ is closed by Algebra, Lemma 10.40.5. $\square$

Lemma 28.24.12. Let $h : X \to Y$ be a morphism of schemes over $S$. Let $\mathcal{G}$ be a quasi-coherent sheaf on $Y$. Let $x \in X$ with $y = h(x) \in Y$. If $h$ is flat at $x$, then $$ \mathcal{G}\text{ flat over }S\text{ at }y \Leftrightarrow h^*\mathcal{G}\text{ flat over }S\text{ at }x. $$ In particular: If $h$ is surjective and flat, then $\mathcal{G}$ is flat over $S$, if and only if $h^*\mathcal{G}$ is flat over $S$. If $h$ is surjective and flat, and $X$ is flat over $S$, then $Y$ is flat over $S$.

Proof.You can prove this by applying Algebra, Lemma 10.38.9. Here is a direct proof. Let $s \in S$ be the image of $y$. Consider the local ring maps $\mathcal{O}_{S, s} \to \mathcal{O}_{Y, y} \to \mathcal{O}_{X, x}$. By assumption the ring map $\mathcal{O}_{Y, y} \to \mathcal{O}_{X, x}$ is faithfully flat, see Algebra, Lemma 10.38.17. Let $N = \mathcal{G}_y$. Note that $h^*\mathcal{G}_x = N \otimes_{\mathcal{O}_{Y, y}} \mathcal{O}_{X, x}$, see Sheaves, Lemma 6.26.4. Let $M' \to M$ be an injection of $\mathcal{O}_{S, s}$-modules. By the faithful flatness mentioned above we have \begin{align*} \mathop{\rm Ker}( M' \otimes_{\mathcal{O}_{S, s}} N \to M \otimes_{\mathcal{O}_{S, s}} N) \otimes_{\mathcal{O}_{Y, y}} \mathcal{O}_{X, x} \\ = \mathop{\rm Ker}( M' \otimes_{\mathcal{O}_{S, s}} N \otimes_{\mathcal{O}_{Y, y}} \mathcal{O}_{X, x} \to M \otimes_{\mathcal{O}_{S, s}} N \otimes_{\mathcal{O}_{Y, y}} \mathcal{O}_{X, x}) \end{align*} Hence the equivalence of the lemma follows from the second characterization of flatness in Algebra, Lemma 10.38.5. $\square$Lemma 28.24.13. Let $f : Y \to X$ be a morphism of schemes. Let $\mathcal{F}$ be a finite type quasi-coherent $\mathcal{O}_X$-module with scheme theoretic support $Z \subset X$. If $f$ is flat, then $f^{-1}(Z)$ is the scheme theoretic support of $f^*\mathcal{F}$.

Proof.Using the characterization of scheme theoretic support on affines as given in Lemma 28.5.4 we reduce to Algebra, Lemma 10.39.4. $\square$Lemma 28.24.14. Let $f : X \to Y$ be a flat morphism of schemes. Let $V \subset Y$ be a retrocompact open which is scheme theoretically dense. Then $f^{-1}V$ is scheme theoretically dense in $X$.

Proof.We will use the characterization of Lemma 28.7.5. We have to show that for any open $U \subset X$ the map $\mathcal{O}_X(U) \to \mathcal{O}_X(U \cap f^{-1}V)$ is injective. It suffices to prove this when $U$ is an affine open which maps into an affine open $W \subset Y$. Say $W = \mathop{\rm Spec}(A)$ and $U = \mathop{\rm Spec}(B)$. Then $V \cap W = D(f_1) \cup \ldots \cup D(f_n)$ for some $f_i \in A$, see Algebra, Lemma 10.28.1. Thus we have to show that $B \to B_{f_1} \times \ldots \times B_{f_n}$ is injective. We are given that $A \to A_{f_1} \times \ldots \times A_{f_n}$ is injective and that $A \to B$ is flat. Since $B_{f_i} = A_{f_i} \otimes_A B$ we win. $\square$Lemma 28.24.15. Let $f : X \to Y$ be a flat morphism of schemes. Let $g : V \to Y$ be a quasi-compact morphism of schemes. Let $Z \subset Y$ be the scheme theoretic image of $g$ and let $Z' \subset X$ be the scheme theoretic image of the base change $V \times_Y X \to X$. Then $Z' = f^{-1}Z$.

Proof.Recall that $Z$ is cut out by $\mathcal{I} = \mathop{\rm Ker}(\mathcal{O}_Y \to g_*\mathcal{O}_V)$ and $Z'$ is cut out by $\mathcal{I}' = \mathop{\rm Ker}(\mathcal{O}_X \to (V \times_Y X \to X)_*\mathcal{O}_{V \times_Y X})$, see Lemma 28.6.3. Hence the question is local on $X$ and $Y$ and we may assume $X$ and $Y$ affine. Note that we may replace $V$ by $\coprod V_i$ where $V = V_1 \cup \ldots \cup V_n$ is a finite affine open covering. Hence we may assume $g$ is affine. In this case $(V \times_Y X \to X)_*\mathcal{O}_{V \times_Y X}$ is the pullback of $g_*\mathcal{O}_V$ by $f$. Since $f$ is flat we conclude that $f^*\mathcal{I} = \mathcal{I}'$ and the lemma holds. $\square$

The code snippet corresponding to this tag is a part of the file `morphisms.tex` and is located in lines 4176–4526 (see updates for more information).

```
\section{Flat morphisms}
\label{section-flat}
\noindent
Flatness is one of the most important technical tools in algebraic geometry.
In this section we introduce this notion. We intentionally limit the discussion
to straightforward observations, apart from Lemma \ref{lemma-fppf-open}.
A very important class of results, namely criteria for flatness, are
discussed in
Algebra, Sections \ref{algebra-section-criteria-flatness},
\ref{algebra-section-flatness-artinian},
\ref{algebra-section-more-flatness-criteria}, and
More on Morphisms, Section
\ref{more-morphisms-section-criterion-flat-fibres}.
There is a chapter dedicated to advanced material on flat morphisms of
schemes, namely More on Flatness, Section \ref{flat-section-introduction}.
\medskip\noindent
Recall that a module $M$ over a ring $R$ is {\it flat} if the functor
$-\otimes_R M : \text{Mod}_R \to \text{Mod}_R$ is exact. A ring map
$R \to A$ is said to be {\it flat} if $A$ is flat as an $R$-module.
See
Algebra, Definition \ref{algebra-definition-flat}.
\begin{definition}
\label{definition-flat}
Let $f : X \to S$ be a morphism of schemes.
Let $\mathcal{F}$ be a quasi-coherent sheaf of $\mathcal{O}_X$-modules.
\begin{enumerate}
\item We say $f$ is {\it flat at a point $x \in X$} if the
local ring $\mathcal{O}_{X, x}$ is flat over the local ring
$\mathcal{O}_{S, f(x)}$.
\item We say that $\mathcal{F}$ is {\it flat over $S$ at a point $x \in X$}
if the stalk $\mathcal{F}_x$ is a flat $\mathcal{O}_{S, f(x)}$-module.
\item We say $f$ is {\it flat} if $f$ is flat at every point of $X$.
\item We say that $\mathcal{F}$ is {\it flat over $S$} if
$\mathcal{F}$ is flat over $S$ at every point $x$ of $X$.
\end{enumerate}
\end{definition}
\noindent
Thus we see that $f$ is flat if and only if
the structure sheaf $\mathcal{O}_X$ is flat over $S$.
\begin{lemma}
\label{lemma-flat-module-characterize}
Let $f : X \to S$ be a morphism of schemes.
Let $\mathcal{F}$ be a quasi-coherent sheaf of $\mathcal{O}_X$-modules.
The following are equivalent
\begin{enumerate}
\item The sheaf $\mathcal{F}$ is flat over $S$.
\item For every affine opens $U \subset X$, $V \subset S$
with $f(U) \subset V$ the $\mathcal{O}_S(V)$-module $\mathcal{F}(U)$ is flat.
\item There exists an open covering $S = \bigcup_{j \in J} V_j$
and open coverings $f^{-1}(V_j) = \bigcup_{i \in I_j} U_i$ such
that each of the modules $\mathcal{F}|_{U_i}$ is
flat over $V_j$, for all $j\in J, i\in I_j$.
\item There exists an affine open covering $S = \bigcup_{j \in J} V_j$
and affine open coverings $f^{-1}(V_j) = \bigcup_{i \in I_j} U_i$ such
that $\mathcal{F}(U_i)$ is a flat $\mathcal{O}_S(V_j)$-module, for all
$j\in J, i\in I_j$.
\end{enumerate}
Moreover, if $\mathcal{F}$ is flat over $S$ then for
any open subschemes $U \subset X$, $V \subset S$ with $f(U) \subset V$
the restriction $\mathcal{F}|_U$ is flat over $V$.
\end{lemma}
\begin{proof}
Let $R \to A$ be a ring map. Let $M$ be an $A$-module.
If $M$ is $R$-flat, then for all primes
$\mathfrak q$ the module $M_{\mathfrak q}$ is flat over $R_{\mathfrak p}$
with $\mathfrak p$ the prime of $R$ lying under $\mathfrak q$. Conversely, if
$M_{\mathfrak q}$ is flat over $R_{\mathfrak p}$ for all primes $\mathfrak q$
of $A$, then $M$ is flat over $R$. See
Algebra, Lemma \ref{algebra-lemma-flat-localization}.
This equivalence easily implies the statements of the lemma.
\end{proof}
\begin{lemma}
\label{lemma-flat-characterize}
Let $f : X \to S$ be a morphism of schemes.
The following are equivalent
\begin{enumerate}
\item The morphism $f$ is flat.
\item For every affine opens $U \subset X$, $V \subset S$
with $f(U) \subset V$ the ring map
$\mathcal{O}_S(V) \to \mathcal{O}_X(U)$ is flat.
\item There exists an open covering $S = \bigcup_{j \in J} V_j$
and open coverings $f^{-1}(V_j) = \bigcup_{i \in I_j} U_i$ such
that each of the morphisms $U_i \to V_j$, $j\in J, i\in I_j$
is flat.
\item There exists an affine open covering $S = \bigcup_{j \in J} V_j$
and affine open coverings $f^{-1}(V_j) = \bigcup_{i \in I_j} U_i$ such
that $\mathcal{O}_S(V_j) \to \mathcal{O}_X(U_i)$ is flat, for all
$j\in J, i\in I_j$.
\end{enumerate}
Moreover, if $f$ is flat then for
any open subschemes $U \subset X$, $V \subset S$ with $f(U) \subset V$
the restriction $f|_U : U \to V$ is flat.
\end{lemma}
\begin{proof}
This is a special case of Lemma \ref{lemma-flat-module-characterize}
above.
\end{proof}
\begin{lemma}
\label{lemma-composition-module-flat}
Let $X \to Y \to Z$ be morphisms of schemes. Let $\mathcal{F}$ be a
quasi-coherent $\mathcal{O}_X$-module. Let $x \in X$ with image $y$ in $Y$.
If $\mathcal{F}$ is flat over $Y$ at $x$, and $Y$ is flat over $Z$ at
$y$, then $\mathcal{F}$ is flat over $Z$ at $x$.
\end{lemma}
\begin{proof}
See Algebra, Lemma \ref{algebra-lemma-composition-flat}.
\end{proof}
\begin{lemma}
\label{lemma-composition-flat}
The composition of flat morphisms is flat.
\end{lemma}
\begin{proof}
This is a special case of Lemma \ref{lemma-composition-module-flat}.
\end{proof}
\begin{lemma}
\label{lemma-base-change-module-flat}
Let $f : X \to S$ be a morphism of schemes.
Let $\mathcal{F}$ be a quasi-coherent sheaf of $\mathcal{O}_X$-modules.
Let $g : S' \to S$ be a morphism of schemes.
Denote $g' : X' = X_{S'} \to X$ the projection.
Let $x' \in X'$ be a point with image $x = g(x') \in X$.
If $\mathcal{F}$ is flat over $S$ at $x$, then
$(g')^*\mathcal{F}$ is flat over $S'$ at $x'$.
In particular, if $\mathcal{F}$ is flat over $S$, then
$(g')^*\mathcal{F}$ is flat over $S'$.
\end{lemma}
\begin{proof}
See Algebra, Lemma \ref{algebra-lemma-flat-base-change}.
\end{proof}
\begin{lemma}
\label{lemma-base-change-flat}
The base change of a flat morphism is flat.
\end{lemma}
\begin{proof}
This is a special case of Lemma \ref{lemma-base-change-module-flat}.
\end{proof}
\begin{lemma}
\label{lemma-generalizations-lift-flat}
Let $f : X \to S$ be a flat morphism of schemes.
Then generalizations lift along $f$, see
Topology, Definition \ref{topology-definition-lift-specializations}.
\end{lemma}
\begin{proof}
See Algebra, Section \ref{algebra-section-going-up}.
\end{proof}
\begin{lemma}
\label{lemma-fppf-open}
A flat morphism locally of finite presentation is universally open.
\end{lemma}
\begin{proof}
This follows from Lemmas \ref{lemma-generalizations-lift-flat} and
Lemma \ref{lemma-locally-finite-presentation-universally-open} above.
We can also argue directly as follows.
\medskip\noindent
Let $f : X \to S$ be flat locally of finite presentation.
To show $f$ is open it suffices to show that we may cover
$X$ by open affines $X = \bigcup U_i$ such that $U_i \to S$
is open. By definition we may cover $X$ by
affine opens $U_i \subset X$ such that each $U_i$ maps
into an affine open $V_i \subset S$ and such that
the induced ring map $\mathcal{O}_S(V_i) \to \mathcal{O}_X(U_i)$ is
of finite presentation. Thus $U_i \to V_i$ is open by
Algebra, Proposition \ref{algebra-proposition-fppf-open}.
The lemma follows.
\end{proof}
\begin{lemma}
\label{lemma-pf-flat-module-open}
Let $f : X \to Y$ be a morphism of schemes.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
Assume $f$ locally finite presentation, $\mathcal{F}$ of
finite type, $X = \text{Supp}(\mathcal{F})$, and
$\mathcal{F}$ flat over $Y$. Then $f$ is universally open.
\end{lemma}
\begin{proof}
By Lemmas \ref{lemma-base-change-module-flat},
\ref{lemma-base-change-finite-presentation}, and
\ref{lemma-support-finite-type}
the assumptions are preserved under base change.
By Lemma \ref{lemma-locally-finite-presentation-universally-open}
it suffices to show that generalizations lift along $f$.
This follows from Algebra, Lemma \ref{algebra-lemma-going-down-flat-module}.
\end{proof}
\begin{lemma}
\label{lemma-fpqc-quotient-topology}
Let $f : X \to Y$ be a quasi-compact, surjective, flat morphism.
A subset $T \subset Y$ is open (resp.\ closed) if and only
$f^{-1}(T)$ is open (resp.\ closed). In other words, $f$ is
a submersive morphism.
\end{lemma}
\begin{proof}
The question is local on $Y$, hence we may assume that $Y$ is affine.
In this case $X$ is quasi-compact as $f$ is quasi-compact.
Write $X = X_1 \cup \ldots \cup X_n$ as a finite union of affine opens.
Then $f' : X' = X_1 \amalg \ldots \amalg X_n \to Y$ is a surjective
flat morphism of affine schemes. Note that for $T \subset Y$ we have
$(f')^{-1}(T) = f^{-1}(T) \cap X_1 \amalg \ldots \amalg f^{-1}(T) \cap X_n$.
Hence, $f^{-1}(T)$ is open if and only if $(f')^{-1}(T)$ is open.
Thus we may assume both $X$ and $Y$ are affine.
\medskip\noindent
Let $f : \Spec(B) \to \Spec(A)$ be a surjective
morphism of affine schemes corresponding to a flat ring map $A \to B$.
Suppose that $f^{-1}(T)$ is closed, say $f^{-1}(T) = V(I)$ for $I \subset A$
an ideal. Then $T = f(f^{-1}(T)) = f(V(I))$ is the image of
$\Spec(A/I) \to \Spec(B)$ (here we use that $f$
is surjective). On the other hand, generalizations lift along $f$
(Lemma \ref{lemma-generalizations-lift-flat}).
Hence by Topology, Lemma \ref{topology-lemma-lift-specializations-images}
we see that $Y \setminus T = f(X \setminus f^{-1}(T))$ is stable under
generalization. Hence $T$ is stable under specialization
(Topology, Lemma \ref{topology-lemma-open-closed-specialization}).
Thus $T$ is closed by
Algebra, Lemma \ref{algebra-lemma-image-stable-specialization-closed}.
\end{proof}
\begin{lemma}
\label{lemma-flat-permanence}
Let $h : X \to Y$ be a morphism of schemes over $S$.
Let $\mathcal{G}$ be a quasi-coherent sheaf on $Y$.
Let $x \in X$ with $y = h(x) \in Y$. If $h$ is flat at $x$, then
$$
\mathcal{G}\text{ flat over }S\text{ at }y
\Leftrightarrow
h^*\mathcal{G}\text{ flat over }S\text{ at }x.
$$
In particular: If $h$ is surjective and flat, then
$\mathcal{G}$ is flat over $S$, if and only if
$h^*\mathcal{G}$ is flat over $S$. If $h$ is surjective and
flat, and $X$ is flat over $S$, then $Y$ is flat over $S$.
\end{lemma}
\begin{proof}
You can prove this by applying
Algebra, Lemma \ref{algebra-lemma-flatness-descends-more-general}.
Here is a direct proof. Let $s \in S$ be the image of $y$.
Consider the local ring maps
$\mathcal{O}_{S, s} \to \mathcal{O}_{Y, y} \to \mathcal{O}_{X, x}$.
By assumption the ring map $\mathcal{O}_{Y, y} \to \mathcal{O}_{X, x}$
is faithfully flat, see
Algebra, Lemma \ref{algebra-lemma-local-flat-ff}.
Let $N = \mathcal{G}_y$. Note that
$h^*\mathcal{G}_x = N \otimes_{\mathcal{O}_{Y, y}} \mathcal{O}_{X, x}$, see
Sheaves, Lemma \ref{sheaves-lemma-stalk-pullback-modules}.
Let $M' \to M$ be an injection of $\mathcal{O}_{S, s}$-modules.
By the faithful flatness mentioned above we have
\begin{align*}
\Ker(
M' \otimes_{\mathcal{O}_{S, s}} N \to M \otimes_{\mathcal{O}_{S, s}} N)
\otimes_{\mathcal{O}_{Y, y}} \mathcal{O}_{X, x} \\
=
\Ker(
M' \otimes_{\mathcal{O}_{S, s}} N
\otimes_{\mathcal{O}_{Y, y}} \mathcal{O}_{X, x}
\to
M \otimes_{\mathcal{O}_{S, s}} N
\otimes_{\mathcal{O}_{Y, y}} \mathcal{O}_{X, x})
\end{align*}
Hence the equivalence of the lemma follows from the second characterization
of flatness in
Algebra, Lemma \ref{algebra-lemma-flat}.
\end{proof}
\begin{lemma}
\label{lemma-flat-pullback-support}
Let $f : Y \to X$ be a morphism of schemes. Let $\mathcal{F}$ be
a finite type quasi-coherent $\mathcal{O}_X$-module with scheme
theoretic support $Z \subset X$. If $f$ is flat,
then $f^{-1}(Z)$ is the scheme theoretic support of $f^*\mathcal{F}$.
\end{lemma}
\begin{proof}
Using the characterization of scheme theoretic support on affines
as given in Lemma \ref{lemma-scheme-theoretic-support} we reduce to
Algebra, Lemma \ref{algebra-lemma-annihilator-flat-base-change}.
\end{proof}
\begin{lemma}
\label{lemma-flat-morphism-scheme-theoretically-dense-open}
Let $f : X \to Y$ be a flat morphism of schemes. Let $V \subset Y$ be
a retrocompact open which is scheme theoretically dense. Then $f^{-1}V$
is scheme theoretically dense in $X$.
\end{lemma}
\begin{proof}
We will use the characterization of
Lemma \ref{lemma-characterize-scheme-theoretically-dense}.
We have to show that for any open $U \subset X$ the map
$\mathcal{O}_X(U) \to \mathcal{O}_X(U \cap f^{-1}V)$ is injective.
It suffices to prove this when $U$ is an affine open which maps into
an affine open $W \subset Y$. Say $W = \Spec(A)$ and $U = \Spec(B)$.
Then $V \cap W = D(f_1) \cup \ldots \cup D(f_n)$ for some
$f_i \in A$, see
Algebra, Lemma \ref{algebra-lemma-qc-open}.
Thus we have to show that
$B \to B_{f_1} \times \ldots \times B_{f_n}$ is injective.
We are given that $A \to A_{f_1} \times \ldots \times A_{f_n}$ is injective
and that $A \to B$ is flat. Since $B_{f_i} = A_{f_i} \otimes_A B$ we win.
\end{proof}
\begin{lemma}
\label{lemma-flat-base-change-scheme-theoretic-image}
Let $f : X \to Y$ be a flat morphism of schemes. Let $g : V \to Y$ be a
quasi-compact morphism of schemes. Let $Z \subset Y$ be the scheme theoretic
image of $g$ and let $Z' \subset X$ be the scheme theoretic image of the
base change $V \times_Y X \to X$. Then $Z' = f^{-1}Z$.
\end{lemma}
\begin{proof}
Recall that $Z$ is cut out by
$\mathcal{I} = \Ker(\mathcal{O}_Y \to g_*\mathcal{O}_V)$
and $Z'$ is cut out by
$\mathcal{I}' = \Ker(\mathcal{O}_X \to
(V \times_Y X \to X)_*\mathcal{O}_{V \times_Y X})$, see
Lemma \ref{lemma-quasi-compact-scheme-theoretic-image}.
Hence the question is local on $X$ and $Y$ and we may assume $X$ and $Y$
affine. Note that we may replace $V$ by $\coprod V_i$ where
$V = V_1 \cup \ldots \cup V_n$ is a finite affine open covering.
Hence we may assume $g$ is affine. In this case
$(V \times_Y X \to X)_*\mathcal{O}_{V \times_Y X}$ is the pullback
of $g_*\mathcal{O}_V$ by $f$. Since $f$ is flat we conclude that
$f^*\mathcal{I} = \mathcal{I}'$ and the lemma holds.
\end{proof}
```

## Comments (2)

## Add a comment on tag `01U2`

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the lower-right corner).

All contributions are licensed under the GNU Free Documentation License.