The Stacks project

Lemma 28.22.2. Let $f : X \to S$ be a morphism.

  1. If $f$ is locally of finite presentation and generalizations lift along $f$, then $f$ is open.

  2. If $f$ is locally of finite presentation and generalizations lift along every base change of $f$, then $f$ is universally open.

Proof. It suffices to prove the first assertion. This reduces to the case where both $X$ and $S$ are affine. In this case the result follows from Algebra, Lemma 10.40.3 and Proposition 10.40.8. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01U1. Beware of the difference between the letter 'O' and the digit '0'.