Lemma 29.25.7. Let $f : X \to S$ be a morphism of schemes. Let $\mathcal{F}$ be a quasi-coherent sheaf of $\mathcal{O}_ X$-modules. Let $g : S' \to S$ be a morphism of schemes. Denote $g' : X' = X_{S'} \to X$ the projection. Let $x' \in X'$ be a point with image $x = g'(x') \in X$. If $\mathcal{F}$ is flat over $S$ at $x$, then $(g')^*\mathcal{F}$ is flat over $S'$ at $x'$. In particular, if $\mathcal{F}$ is flat over $S$, then $(g')^*\mathcal{F}$ is flat over $S'$.
Proof. See Algebra, Lemma 10.39.7. $\square$
Comments (0)
There are also: