The Stacks project

Lemma 29.6.3. Let $f : X \to Y$ be a morphism of schemes. Let $Z \subset Y$ be the scheme theoretic image of $f$. If $f$ is quasi-compact then

  1. the sheaf of ideals $\mathcal{I} = \mathop{\mathrm{Ker}}(\mathcal{O}_ Y \to f_*\mathcal{O}_ X)$ is quasi-coherent,

  2. the scheme theoretic image $Z$ is the closed subscheme determined by $\mathcal{I}$,

  3. for any open $U \subset Y$ the scheme theoretic image of $f|_{f^{-1}(U)} : f^{-1}(U) \to U$ is equal to $Z \cap U$, and

  4. the image $f(X) \subset Z$ is a dense subset of $Z$, in other words the morphism $X \to Z$ is dominant (see Definition 29.8.1).

Proof. Part (4) follows from part (3). To show (3) it suffices to prove (1) since the formation of $\mathcal{I}$ commutes with restriction to open subschemes of $Y$. And if (1) holds then in the proof of Lemma 29.6.1 we showed (2). Thus it suffices to prove that $\mathcal{I}$ is quasi-coherent. Since the property of being quasi-coherent is local we may assume $Y$ is affine. As $f$ is quasi-compact, we can find a finite affine open covering $X = \bigcup _{i = 1, \ldots , n} U_ i$. Denote $f'$ the composition

\[ X' = \coprod U_ i \longrightarrow X \longrightarrow Y. \]

Then $f_*\mathcal{O}_ X$ is a subsheaf of $f'_*\mathcal{O}_{X'}$, and hence $\mathcal{I} = \mathop{\mathrm{Ker}}(\mathcal{O}_ Y \to f'_*\mathcal{O}_{X'})$. By Schemes, Lemma 26.24.1 the sheaf $f'_*\mathcal{O}_{X'}$ is quasi-coherent on $Y$. Hence we win. $\square$

Comments (2)

Comment #4285 by Dario WeiƟmann on

typo: is missing an

There are also:

  • 9 comment(s) on Section 29.6: Scheme theoretic image

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01R8. Beware of the difference between the letter 'O' and the digit '0'.