## Tag `07T9`

Chapter 28: Morphisms of Schemes > Section 28.24: Flat morphisms

Lemma 28.24.13. Let $f : Y \to X$ be a morphism of schemes. Let $\mathcal{F}$ be a finite type quasi-coherent $\mathcal{O}_X$-module with scheme theoretic support $Z \subset X$. If $f$ is flat, then $f^{-1}(Z)$ is the scheme theoretic support of $f^*\mathcal{F}$.

Proof.Using the characterization of scheme theoretic support on affines as given in Lemma 28.5.4 we reduce to Algebra, Lemma 10.39.4. $\square$

The code snippet corresponding to this tag is a part of the file `morphisms.tex` and is located in lines 4469–4475 (see updates for more information).

```
\begin{lemma}
\label{lemma-flat-pullback-support}
Let $f : Y \to X$ be a morphism of schemes. Let $\mathcal{F}$ be
a finite type quasi-coherent $\mathcal{O}_X$-module with scheme
theoretic support $Z \subset X$. If $f$ is flat,
then $f^{-1}(Z)$ is the scheme theoretic support of $f^*\mathcal{F}$.
\end{lemma}
\begin{proof}
Using the characterization of scheme theoretic support on affines
as given in Lemma \ref{lemma-scheme-theoretic-support} we reduce to
Algebra, Lemma \ref{algebra-lemma-annihilator-flat-base-change}.
\end{proof}
```

## Comments (0)

## Add a comment on tag `07T9`

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the lower-right corner).

All contributions are licensed under the GNU Free Documentation License.

There are no comments yet for this tag.

There are also 2 comments on Section 28.24: Morphisms of Schemes.