## 8.7 The inertia stack

Let $p : \mathcal{S} \to \mathcal{C}$ and $p' : \mathcal{S}' \to \mathcal{C}$ be fibred categories over the category $\mathcal{C}$. Let $F : \mathcal{S} \to \mathcal{S}'$ be a $1$-morphism of fibred categories over $\mathcal{C}$. Recall that we have defined in Categories, Definition 4.34.2 a *relative inertia fibred category* $\mathcal{I}_{\mathcal{S}/\mathcal{S}'} \to \mathcal{C}$ as the category whose objects are pairs $(x , \alpha )$ where $x \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{S})$ and $\alpha : x \to x$ with $F(\alpha ) = \text{id}_{F(x)}$. There is also an absolute version, namely the *inertia* $\mathcal{I}_\mathcal {S}$ of $\mathcal{S}$. These inertia categories are actually stacks over $\mathcal{C}$ provided that $\mathcal{S}$ and $\mathcal{S}'$ are stacks.

Lemma 8.7.1. Let $\mathcal{C}$ be a site. Let $p : \mathcal{S} \to \mathcal{C}$ and $p' : \mathcal{S}' \to \mathcal{C}$ be stacks over the site $\mathcal{C}$. Let $F : \mathcal{S} \to \mathcal{S}'$ be a $1$-morphism of stacks over $\mathcal{C}$.

The inertia $\mathcal{I}_{\mathcal{S}/\mathcal{S}'}$ and $\mathcal{I}_\mathcal {S}$ are stacks over $\mathcal{C}$.

If $\mathcal{S}, \mathcal{S}'$ are stacks in groupoids over $\mathcal{C}$, then so are $\mathcal{I}_{\mathcal{S}/\mathcal{S}'}$ and $\mathcal{I}_\mathcal {S}$.

If $\mathcal{S}, \mathcal{S}'$ are stacks in setoids over $\mathcal{C}$, then so are $\mathcal{I}_{\mathcal{S}/\mathcal{S}'}$ and $\mathcal{I}_\mathcal {S}$.

**Proof.**
The first three assertions follow from Lemmas 8.4.6, 8.5.6, and 8.6.6 and the equivalence in Categories, Lemma 4.34.1 part (1).
$\square$

Lemma 8.7.2. Let $\mathcal{C}$ be a site. If $\mathcal{S}$ is a stack in groupoids, then the canonical $1$-morphism $\mathcal{I}_\mathcal {S} \to \mathcal{S}$ is an equivalence if and only if $\mathcal{S}$ is a stack in setoids.

**Proof.**
Follows directly from Categories, Lemma 4.39.7.
$\square$

## Comments (4)

Comment #4874 by Olivier de Gaay Fortman on

Comment #5154 by Johan on

Comment #5523 by Matthieu Romagny on

Comment #5716 by Johan on