Lemma 8.7.1. Let $\mathcal{C}$ be a site. Let $p : \mathcal{S} \to \mathcal{C}$ and $p' : \mathcal{S}' \to \mathcal{C}$ be stacks over the site $\mathcal{C}$. Let $F : \mathcal{S} \to \mathcal{S}'$ be a $1$-morphism of stacks over $\mathcal{C}$.

1. The inertia $\mathcal{I}_{\mathcal{S}/\mathcal{S}'}$ and $\mathcal{I}_\mathcal {S}$ are stacks over $\mathcal{C}$.

2. If $\mathcal{S}, \mathcal{S}'$ are stacks in groupoids over $\mathcal{C}$, then so are $\mathcal{I}_{\mathcal{S}/\mathcal{S}'}$ and $\mathcal{I}_\mathcal {S}$.

3. If $\mathcal{S}, \mathcal{S}'$ are stacks in setoids over $\mathcal{C}$, then so are $\mathcal{I}_{\mathcal{S}/\mathcal{S}'}$ and $\mathcal{I}_\mathcal {S}$.

Proof. The first three assertions follow from Lemmas 8.4.6, 8.5.6, and 8.6.6 and the equivalence in Categories, Lemma 4.34.1 part (1). $\square$

There are also:

• 4 comment(s) on Section 8.7: The inertia stack

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).