The Stacks project

Lemma 33.7.18. Let $k$ be a field, with separable algebraic closure $\overline{k}$. Let $X$ be a scheme over $k$. There is an action

\[ \text{Gal}(\overline{k}/k)^{opp} \times \pi _0(X_{\overline{k}}) \longrightarrow \pi _0(X_{\overline{k}}) \]

with the following properties:

  1. An element $\overline{T} \in \pi _0(X_{\overline{k}})$ is fixed by the action if and only if there exists a connected component $T \subset X$, which is geometrically connected over $k$, such that $T_{\overline{k}} = \overline{T}$.

  2. For any field extension $k'/k$ with separable algebraic closure $\overline{k}'$ the diagram

    \[ \xymatrix{ \text{Gal}(\overline{k}'/k') \times \pi _0(X_{\overline{k}'}) \ar[r] \ar[d] & \pi _0(X_{\overline{k}'}) \ar[d] \\ \text{Gal}(\overline{k}/k) \times \pi _0(X_{\overline{k}}) \ar[r] & \pi _0(X_{\overline{k}}) } \]

    is commutative (where the right vertical arrow is a bijection according to Lemma 33.7.6).

Proof. The action (33.7.8.1) of $\text{Gal}(\overline{k}/k)$ on $X_{\overline{k}}$ induces an action on its connected components. Connected components are always closed (Topology, Lemma 5.7.3). Hence if $\overline{T}$ is as in (1), then by Lemma 33.7.10 there exists a closed subset $T \subset X$ such that $\overline{T} = T_{\overline{k}}$. Note that $T$ is geometrically connected over $k$, see Lemma 33.7.7. To see that $T$ is a connected component of $X$, suppose that $T \subset T'$, $T \not= T'$ where $T'$ is a connected component of $X$. In this case $T'_{k'}$ strictly contains $\overline{T}$ and hence is disconnected. By Lemma 33.7.12 this means that $T'$ is disconnected! Contradiction.

We omit the proof of the functoriality in (2). $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 038D. Beware of the difference between the letter 'O' and the digit '0'.