Proposition 41.19.2. Let $A$, $B$ be Noetherian local rings. Let $f : A \to B$ be an étale homomorphism of local rings. Then $\text{depth}(A) = \text{depth}(B)$
Proof. See Algebra, Lemma 10.163.2. $\square$
Proposition 41.19.2. Let $A$, $B$ be Noetherian local rings. Let $f : A \to B$ be an étale homomorphism of local rings. Then $\text{depth}(A) = \text{depth}(B)$
Proof. See Algebra, Lemma 10.163.2. $\square$
Comments (0)