Lemma 35.3.8. Let $R \to A$ be a faithfully flat ring map, and let $R \to R'$ be faithfully flat. Set $A' = R' \otimes _ R A$. If all descent data for $R' \to A'$ are effective, then so are all descent data for $R \to A$.

**Proof.**
Let $(N, \varphi )$ be a descent datum for $R \to A$. Set $N' = R' \otimes _ R N = A' \otimes _ A N$, and denote $\varphi ' = \text{id}_{R'} \otimes \varphi $ the base change of the descent datum $\varphi $. Then $(N', \varphi ')$ is a descent datum for $R' \to A'$ and $H^0(s(N'_\bullet )) = R' \otimes _ R H^0(s(N_\bullet ))$. Moreover, the map $A' \otimes _{R'} H^0(s(N'_\bullet )) \to N'$ is identified with the base change of the $A$-module map $A \otimes _ R H^0(s(N)) \to N$ via the faithfully flat map $A \to A'$. Hence we conclude by Lemma 35.3.7.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (4)

Comment #2874 by Ko Aoki on

Comment #2936 by Johan on

Comment #2952 by Ko Aoki on

Comment #3079 by Johan on

There are also: