Lemma 18.12.4. Let \mathcal{C}, \mathcal{D} be sites. Let f : \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{D}) be a morphism of topoi. Let \mathcal{O} be a sheaf of rings on \mathcal{C}. Let \mathcal{F} be a sheaf of \mathcal{O}-modules. Let \mathcal{G} be a sheaf of f_*\mathcal{O}-modules. Then
\mathop{\mathrm{Mor}}\nolimits _{\textit{Mod}(\mathcal{O})}( \mathcal{O} \otimes _{f^{-1}f_*\mathcal{O}} f^{-1}\mathcal{G}, \mathcal{F}) = \mathop{\mathrm{Mor}}\nolimits _{\textit{Mod}(f_*\mathcal{O})}(\mathcal{G}, f_*\mathcal{F}).
Here we use Lemmas 18.12.2 and 18.12.1, and we use the canonical map f^{-1}f_*\mathcal{O} \to \mathcal{O} in the definition of the tensor product.
Proof.
Note that we have
\mathop{\mathrm{Mor}}\nolimits _{\textit{Mod}(\mathcal{O})}( \mathcal{O} \otimes _{f^{-1}f_*\mathcal{O}} f^{-1}\mathcal{G}, \mathcal{F}) = \mathop{\mathrm{Mor}}\nolimits _{\textit{Mod}(f^{-1}f_*\mathcal{O})}( f^{-1}\mathcal{G}, \mathcal{F}_{f^{-1}f_*\mathcal{O}})
by Lemma 18.11.3. Hence the result follows from Lemma 18.12.3.
\square
Comments (0)