Lemma 18.12.4. Let $\mathcal{C}$, $\mathcal{D}$ be sites. Let $f : \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{D})$ be a morphism of topoi. Let $\mathcal{O}$ be a sheaf of rings on $\mathcal{C}$. Let $\mathcal{F}$ be a sheaf of $\mathcal{O}$-modules. Let $\mathcal{G}$ be a sheaf of $f_*\mathcal{O}$-modules. Then

$\mathop{\mathrm{Mor}}\nolimits _{\textit{Mod}(\mathcal{O})}( \mathcal{O} \otimes _{f^{-1}f_*\mathcal{O}} f^{-1}\mathcal{G}, \mathcal{F}) = \mathop{\mathrm{Mor}}\nolimits _{\textit{Mod}(f_*\mathcal{O})}(\mathcal{G}, f_*\mathcal{F}).$

Here we use Lemmas 18.12.2 and 18.12.1, and we use the canonical map $f^{-1}f_*\mathcal{O} \to \mathcal{O}$ in the definition of the tensor product.

Proof. Note that we have

$\mathop{\mathrm{Mor}}\nolimits _{\textit{Mod}(\mathcal{O})}( \mathcal{O} \otimes _{f^{-1}f_*\mathcal{O}} f^{-1}\mathcal{G}, \mathcal{F}) = \mathop{\mathrm{Mor}}\nolimits _{\textit{Mod}(f^{-1}f_*\mathcal{O})}( f^{-1}\mathcal{G}, \mathcal{F}_{f^{-1}f_*\mathcal{O}})$

by Lemma 18.11.3. Hence the result follows from Lemma 18.12.3. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).