Lemma 18.13.3. (f, f^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}_1), \mathcal{O}_1) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}_2), \mathcal{O}_2) and (g, g^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}_2), \mathcal{O}_2) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}_3), \mathcal{O}_3) be morphisms of ringed topoi. There are canonical isomorphisms of functors (g \circ f)_* \cong g_* \circ f_* and (g \circ f)^* \cong f^* \circ g^*.
Proof. This is clear from the definitions. \square
Comments (0)