The Stacks project

18.13 Morphisms of ringed topoi and modules

We have now introduced enough notation so that we are able to define the pullback and pushforward of modules along a morphism of ringed topoi.

Definition 18.13.1. Let $(f, f^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D})$ be a morphism of ringed topoi or ringed sites.

  1. Let $\mathcal{F}$ be a sheaf of $\mathcal{O}_\mathcal {C}$-modules. We define the pushforward of $\mathcal{F}$ as the sheaf of $\mathcal{O}_\mathcal {D}$-modules which as a sheaf of abelian groups equals $f_*\mathcal{F}$ and with module structure given by the restriction via $f^\sharp : \mathcal{O}_\mathcal {D} \to f_*\mathcal{O}_\mathcal {C}$ of the module structure

    \[ f_*\mathcal{O}_\mathcal {C} \times f_*\mathcal{F} \longrightarrow f_*\mathcal{F} \]

    from Lemma 18.12.1.

  2. Let $\mathcal{G}$ be a sheaf of $\mathcal{O}_\mathcal {D}$-modules. We define the pullback $f^*\mathcal{G}$ to be the sheaf of $\mathcal{O}_\mathcal {C}$-modules defined by the formula

    \[ f^*\mathcal{G} = \mathcal{O}_\mathcal {C} \otimes _{f^{-1}\mathcal{O}_\mathcal {D}} f^{-1}\mathcal{G} \]

    where the ring map $f^{-1}\mathcal{O}_\mathcal {D} \to \mathcal{O}_\mathcal {C}$ is $f^\sharp $, and where the module structure is given by Lemma 18.12.2.

Thus we have defined functors

\begin{eqnarray*} f_* : \textit{Mod}(\mathcal{O}_\mathcal {C}) & \longrightarrow & \textit{Mod}(\mathcal{O}_\mathcal {D}) \\ f^* : \textit{Mod}(\mathcal{O}_\mathcal {D}) & \longrightarrow & \textit{Mod}(\mathcal{O}_\mathcal {C}) \end{eqnarray*}

The final result on these functors is that they are indeed adjoint as expected.

Lemma 18.13.2. Let $(f, f^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D})$ be a morphism of ringed topoi or ringed sites. Let $\mathcal{F}$ be a sheaf of $\mathcal{O}_\mathcal {C}$-modules. Let $\mathcal{G}$ be a sheaf of $\mathcal{O}_\mathcal {D}$-modules. There is a canonical bijection

\[ \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_\mathcal {C}}(f^*\mathcal{G}, \mathcal{F}) = \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_\mathcal {D}}(\mathcal{G}, f_*\mathcal{F}). \]

In other words: the functor $f^*$ is the left adjoint to $f_*$.

Proof. This follows from the work we did before:

\begin{eqnarray*} \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_\mathcal {C}}(f^*\mathcal{G}, \mathcal{F}) & = & \mathop{\mathrm{Mor}}\nolimits _{\textit{Mod}(\mathcal{O}_\mathcal {C})}( \mathcal{O}_\mathcal {C} \otimes _{f^{-1}\mathcal{O}_\mathcal {D}} f^{-1}\mathcal{G}, \mathcal{F}) \\ & = & \mathop{\mathrm{Mor}}\nolimits _{\textit{Mod}(f^{-1}\mathcal{O}_\mathcal {D})}( f^{-1}\mathcal{G}, \mathcal{F}_{f^{-1}\mathcal{O}_\mathcal {D}}) \\ & = & \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_\mathcal {D}}(\mathcal{G}, f_*\mathcal{F}). \end{eqnarray*}

Here we use Lemmas 18.11.3 and 18.12.3. $\square$

Lemma 18.13.3. $(f, f^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}_1), \mathcal{O}_1) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}_2), \mathcal{O}_2)$ and $(g, g^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}_2), \mathcal{O}_2) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}_3), \mathcal{O}_3)$ be morphisms of ringed topoi. There are canonical isomorphisms of functors $(g \circ f)_* \cong g_* \circ f_*$ and $(g \circ f)^* \cong f^* \circ g^*$.

Proof. This is clear from the definitions. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 03D5. Beware of the difference between the letter 'O' and the digit '0'.