Lemma 18.13.2. Let (f, f^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D}) be a morphism of ringed topoi or ringed sites. Let \mathcal{F} be a sheaf of \mathcal{O}_\mathcal {C}-modules. Let \mathcal{G} be a sheaf of \mathcal{O}_\mathcal {D}-modules. There is a canonical bijection
In other words: the functor f^* is the left adjoint to f_*.
Comments (0)