Loading [MathJax]/extensions/tex2jax.js

The Stacks project

Lemma 21.10.8. Let $\mathcal{C}$ be a site. Let

\[ 0 \to \mathcal{F} \to \mathcal{G} \to \mathcal{H} \to 0 \]

be a short exact sequence of abelian sheaves on $\mathcal{C}$. Let $U$ be an object of $\mathcal{C}$. If there exists a cofinal system of coverings $\mathcal{U}$ of $U$ such that $\check{H}^1(\mathcal{U}, \mathcal{F}) = 0$, then the map $\mathcal{G}(U) \to \mathcal{H}(U)$ is surjective.

Proof. Take an element $s \in \mathcal{H}(U)$. Choose a covering $\mathcal{U} = \{ U_ i \to U\} _{i \in I}$ such that (a) $\check{H}^1(\mathcal{U}, \mathcal{F}) = 0$ and (b) $s|_{U_ i}$ is the image of a section $s_ i \in \mathcal{G}(U_ i)$. Since we can certainly find a covering such that (b) holds it follows from the assumptions of the lemma that we can find a covering such that (a) and (b) both hold. Consider the sections

\[ s_{i_0i_1} = s_{i_1}|_{U_{i_0} \times _ U U_{i_1}} - s_{i_0}|_{U_{i_0} \times _ U U_{i_1}}. \]

Since $s_ i$ lifts $s$ we see that $s_{i_0i_1} \in \mathcal{F}(U_{i_0} \times _ U U_{i_1})$. By the vanishing of $\check{H}^1(\mathcal{U}, \mathcal{F})$ we can find sections $t_ i \in \mathcal{F}(U_ i)$ such that

\[ s_{i_0i_1} = t_{i_1}|_{U_{i_0} \times _ U U_{i_1}} - t_{i_0}|_{U_{i_0} \times _ U U_{i_1}}. \]

Then clearly the sections $s_ i - t_ i$ satisfy the sheaf condition and glue to a section of $\mathcal{G}$ over $U$ which maps to $s$. Hence we win. $\square$


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.