Definition 66.16.2. Let $S$ be a scheme. A morphism $f : X \to Y$ between algebraic spaces over $S$ is called étale if and only if for every étale morphism $\varphi : U \to X$ where $U$ is a scheme, the composition $f \circ \varphi $ is étale also.
Definition 66.16.2. Let $S$ be a scheme. A morphism $f : X \to Y$ between algebraic spaces over $S$ is called étale if and only if for every étale morphism $\varphi : U \to X$ where $U$ is a scheme, the composition $f \circ \varphi $ is étale also.
Comments (2)
Comment #2317 by Nithi Rungtanapirom on
Comment #2393 by Johan on
There are also: