Lemma 65.16.6. Let $S$ be a scheme. Let $X, Y, Z$ be algebraic spaces. Let $g : X \to Z$, $h : Y \to Z$ be étale morphisms and let $f : X \to Y$ be a morphism such that $h \circ f = g$. Then $f$ is étale.

**Proof.**
Choose a commutative diagram

where $U \to X$ and $V \to Y$ are surjective and étale, see Spaces, Lemma 64.11.6. By assumption the morphisms $\varphi : U \to X \to Z$ and $\psi : V \to Y \to Z$ are étale. Moreover, $\psi \circ \chi = \varphi $ by our assumption on $f, g, h$. Hence $U \to V$ is étale by Lemma 65.16.1 part (2). $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)