Definition 58.17.2. Let $\mathcal{C}$ be a *ringed site*, i.e., a site endowed with a sheaf of rings $\mathcal{O}$. A sheaf of $\mathcal{O}$-modules $\mathcal{F}$ on $\mathcal{C}$ is called *quasi-coherent* if for all $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ there exists a covering $\{ U_ i \to U\} _{i\in I}$ of $\mathcal{C}$ such that the restriction $\mathcal{F}|_{\mathcal{C}/U_ i}$ is isomorphic to the cokernel of an $\mathcal{O}$-linear map of free $\mathcal{O}$-modules

The direct sum over $K$ is the sheaf associated to the presheaf $V \mapsto \bigoplus _{k \in K} \mathcal{O}(V)$ and similarly for the other.

## Comments (0)