Definition 59.35.1. Let f: X\to Y be a morphism of schemes. Let \mathcal{F} a presheaf of sets on X_{\acute{e}tale}. The direct image, or pushforward of \mathcal{F} (under f) is
f_*\mathcal{F} : Y_{\acute{e}tale}^{opp} \longrightarrow \textit{Sets}, \quad (V/Y) \longmapsto \mathcal{F}(X \times _ Y V/X).
We sometimes write f_* = f_{small, *} to distinguish from other direct image functors (such as usual Zariski pushforward or f_{big, *}).
Comments (0)