Processing math: 100%

The Stacks project

Theorem 59.67.8. Let K be a C_1 field. Then \text{Br}(K) = 0.

Proof. Let D be a finite dimensional division algebra over K with center K. We have seen that

D \otimes _ K K^{sep} \cong \text{Mat}_ d(K^{sep})

uniquely up to inner isomorphism. Hence the determinant \det : \text{Mat}_ d(K^{sep}) \to K^{sep} is Galois invariant and descends to a homogeneous degree d map

\det = N_\text {red} : D \longrightarrow K

called the reduced norm. Since K is C_1, if d > 1, then there exists a nonzero x \in D with N_\text {red}(x) = 0. This clearly implies that x is not invertible, which is a contradiction. Hence \text{Br}(K) = 0. \square


Comments (0)

There are also:

  • 3 comment(s) on Section 59.67: Galois cohomology

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.