The Stacks project

94.4 Quasi-coherent sheaves

We define a category $\mathcal{QC}\! \mathit{oh}$ as follows:

  1. An object of $\mathcal{QC}\! \mathit{oh}$ is a pair $(X, \mathcal{F})$, where $X/S$ is an object of $(\mathit{Sch}/S)_{fppf}$, and $\mathcal{F}$ is a quasi-coherent $\mathcal{O}_ X$-module, and

  2. a morphism $(f, \varphi ) : (Y, \mathcal{G}) \to (X, \mathcal{F})$ is a pair consisting of a morphism $f : Y \to X$ of schemes over $S$ and an $f$-map (see Sheaves, Section 6.26) $\varphi : \mathcal{F} \to \mathcal{G}$.

  3. The composition of morphisms

    \[ (Z, \mathcal{H}) \xrightarrow {(g, \psi )} (Y, \mathcal{G}) \xrightarrow {(f, \phi )} (X, \mathcal{F}) \]

    is $(f \circ g, \psi \circ \phi )$ where $\psi \circ \phi $ is the composition of $f$-maps.

Thus $\mathcal{QC}\! \mathit{oh}$ is a category and

\[ p : \mathcal{QC}\! \mathit{oh}\to (\mathit{Sch}/S)_{fppf}, \quad (X, \mathcal{F}) \mapsto X \]

is a functor. Note that the fibre category of $\mathcal{QC}\! \mathit{oh}$ over a scheme $X$ is the opposite of the category $\mathit{QCoh}(\mathcal{O}_ X)$ of quasi-coherent $\mathcal{O}_ X$-modules. We remark for later use that given $(X, \mathcal{F}), (Y, \mathcal{G}) \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{QC}\! \mathit{oh})$ we have

94.4.0.1
\begin{equation} \label{examples-stacks-equation-morphisms-qcoh} \mathop{\mathrm{Mor}}\nolimits _{\mathcal{QC}\! \mathit{oh}}((Y, \mathcal{G}), (X, \mathcal{F})) = \coprod \nolimits _{f \in \mathop{\mathrm{Mor}}\nolimits _ S(Y, X)} \mathop{\mathrm{Mor}}\nolimits _{\mathit{QCoh}(\mathcal{O}_ Y)}(f^*\mathcal{F}, \mathcal{G}) \end{equation}

See the discussion on $f$-maps of modules in Sheaves, Section 6.26.

The category $\mathcal{QC}\! \mathit{oh}$ is not a stack over $(\mathit{Sch}/S)_{fppf}$ because its collection of objects is a proper class. On the other hand we will see that it does satisfy all the axioms of a stack. We will get around the set theoretical issue in Section 94.5.

Lemma 94.4.1. A morphism $(f, \varphi ) : (Y, \mathcal{G}) \to (X, \mathcal{F})$ of $\mathcal{QC}\! \mathit{oh}$ is strongly cartesian if and only if the map $\varphi $ induces an isomorphism $f^*\mathcal{F} \to \mathcal{G}$.

Proof. Let $(X, \mathcal{F}) \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{QC}\! \mathit{oh})$. Let $f : Y \to X$ be a morphism of $(\mathit{Sch}/S)_{fppf}$. Note that there is a canonical $f$-map $c : \mathcal{F} \to f^*\mathcal{F}$ and hence we get a morphism $(f, c) : (Y, f^*\mathcal{F}) \to (X, \mathcal{F})$. We claim that $(f, c)$ is strongly cartesian. Namely, for any object $(Z, \mathcal{H})$ of $\mathcal{QC}\! \mathit{oh}$ we have

\begin{align*} \mathop{\mathrm{Mor}}\nolimits _{\mathcal{QC}\! \mathit{oh}}((Z, \mathcal{H}), (Y, f^*\mathcal{F})) & = \coprod \nolimits _{g \in \mathop{\mathrm{Mor}}\nolimits _ S(Z, Y)} \mathop{\mathrm{Mor}}\nolimits _{\mathit{QCoh}(\mathcal{O}_ Z)}(g^*f^*\mathcal{F}, \mathcal{H}) \\ & = \coprod \nolimits _{g \in \mathop{\mathrm{Mor}}\nolimits _ S(Z, Y)} \mathop{\mathrm{Mor}}\nolimits _{\mathit{QCoh}(\mathcal{O}_ Z)}((f \circ g)^*\mathcal{F}, \mathcal{H}) \\ & = \mathop{\mathrm{Mor}}\nolimits _{\mathcal{QC}\! \mathit{oh}}((Z, \mathcal{H}), (X, \mathcal{F})) \times _{\mathop{\mathrm{Mor}}\nolimits _ S(Z, X)} \mathop{\mathrm{Mor}}\nolimits _ S(Z, Y) \end{align*}

where we have used Equation (94.4.0.1) twice. This proves that the condition of Categories, Definition 4.33.1 holds for $(f, c)$, and hence our claim is true. Now by Categories, Lemma 4.33.2 we see that isomorphisms are strongly cartesian and compositions of strongly cartesian morphisms are strongly cartesian which proves the “if” part of the lemma. For the converse, note that given $(X, \mathcal{F})$ and $f : Y \to X$, if there exists a strongly cartesian morphism lifting $f$ with target $(X, \mathcal{F})$ then it has to be isomorphic to $(f, c)$ (see discussion following Categories, Definition 4.33.1). Hence the "only if" part of the lemma holds. $\square$

Lemma 94.4.2. The functor $p : \mathcal{QC}\! \mathit{oh}\to (\mathit{Sch}/S)_{fppf}$ satisfies conditions (1), (2) and (3) of Stacks, Definition 8.4.1.

Proof. It is clear from Lemma 94.4.1 that $\mathcal{QC}\! \mathit{oh}$ is a fibred category over $(\mathit{Sch}/S)_{fppf}$. Given covering $\mathcal{U} = \{ X_ i \to X\} _{i \in I}$ of $(\mathit{Sch}/S)_{fppf}$ the functor

\[ \mathit{QCoh}(\mathcal{O}_ X) \longrightarrow DD(\mathcal{U}) \]

is fully faithful and essentially surjective, see Descent, Proposition 35.5.2. Hence Stacks, Lemma 8.4.2 applies to show that $\mathcal{QC}\! \mathit{oh}$ satisfies all the axioms of a stack. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 03YL. Beware of the difference between the letter 'O' and the digit '0'.