Proposition 34.5.2. Let $S$ be a scheme. Let $\mathcal{U} = \{ \varphi _ i : U_ i \to S\} $ be an fpqc covering, see Topologies, Definition 33.9.1. Any descent datum on quasi-coherent sheaves for $\mathcal{U} = \{ U_ i \to S\} $ is effective. Moreover, the functor from the category of quasi-coherent $\mathcal{O}_ S$-modules to the category of descent data with respect to $\mathcal{U}$ is fully faithful.

**Proof.**
Let $S = \bigcup _{j \in J} V_ j$ be an affine open covering. For $j, j' \in J$ we denote $V_{jj'} = V_ j \cap V_{j'}$ the intersection (which need not be affine). For $V \subset S$ open we denote $\mathcal{U}_ V = \{ V \times _ S U_ i \to V\} _{i \in I}$ which is a fpqc-covering (Topologies, Lemma 33.9.7). By definition of an fpqc covering, we can find for each $j \in J$ a finite set $K_ j$, a map $\underline{i} : K_ j \to I$, affine opens $U_{\underline{i}(k), k} \subset U_{\underline{i}(k)}$, $k \in K_ j$ such that $\mathcal{V}_ j = \{ U_{\underline{i}(k), k} \to V_ j\} _{k \in K_ j}$ is a standard fpqc covering of $V_ j$. And of course, $\mathcal{V}_ j$ is a refinement of $\mathcal{U}_{V_ j}$. Picture

where the top horizontal arrows are morphisms of families of morphisms with fixed target (see Sites, Definition 7.8.1).

To prove the proposition you show successively the faithfulness, fullness, and essential surjectivity of the functor from quasi-coherent sheaves to descent data.

Faithfulness. Let $\mathcal{F}$, $\mathcal{G}$ be quasi-coherent sheaves on $S$ and let $a, b : \mathcal{F} \to \mathcal{G}$ be homomorphisms of $\mathcal{O}_ S$-modules. Suppose $\varphi _ i^*(a) = \varphi ^*(b)$ for all $i$. Pick $s \in S$. Then $s = \varphi _ i(u)$ for some $i \in I$ and $u \in U_ i$. Since $\mathcal{O}_{S, s} \to \mathcal{O}_{U_ i, u}$ is flat, hence faithfully flat (Algebra, Lemma 10.38.17) we see that $a_ s = b_ s : \mathcal{F}_ s \to \mathcal{G}_ s$. Hence $a = b$.

Fully faithfulness. Let $\mathcal{F}$, $\mathcal{G}$ be quasi-coherent sheaves on $S$ and let $a_ i : \varphi _ i^*\mathcal{F} \to \varphi _ i^*\mathcal{G}$ be homomorphisms of $\mathcal{O}_{U_ i}$-modules such that $\text{pr}_0^*a_ i = \text{pr}_1^*a_ j$ on $U_ i \times _ U U_ j$. We can pull back these morphisms to get morphisms

$k \in K_ j$ with notation as above. Moreover, Lemma 34.2.2 assures us that these define a morphism between (canonical) descent data on $\mathcal{V}_ j$. Hence, by Lemma 34.5.1, we get correspondingly unique morphisms $a_ j : \mathcal{F}|_{V_ j} \to \mathcal{G}|_{V_ j}$. To see that $a_ j|_{V_{jj'}} = a_{j'}|_{V_{jj'}}$ we use that both $a_ j$ and $a_{j'}$ agree with the pullback of the morphism $(a_ i)_{i \in I}$ of (canonical) descent data to any covering refining both $\mathcal{V}_{j, V_{jj'}}$ and $\mathcal{V}_{j', V_{jj'}}$, and using the faithfulness already shown. For example the covering $\mathcal{V}_{jj'} = \{ V_ k \times _ S V_{k'} \to V_{jj'}\} _{k \in K_ j, k' \in K_{j'}}$ will do.

Essential surjectivity. Let $\xi = (\mathcal{F}_ i, \varphi _{ii'})$ be a descent datum for quasi-coherent sheaves relative to the covering $\mathcal{U}$. Pull back this descent datum to get descent data $\xi _ j$ for quasi-coherent sheaves relative to the coverings $\mathcal{V}_ j$ of $V_ j$. By Lemma 34.5.1 once again there exist quasi-coherent sheaves $\mathcal{F}_ j$ on $V_ j$ whose associated canonical descent datum is isomorphic to $\xi _ j$. By fully faithfulness (proved above) we see there are isomorphisms

corresponding to the isomorphism of descent data between the pullback of $\xi _ j$ and $\xi _{j'}$ to $\mathcal{V}_{jj'}$. To see that these maps $\phi _{jj'}$ satisfy the cocycle condition we use faithfulness (proved above) over the triple intersections $V_{jj'j''}$. Hence, by Lemma 34.2.4 we see that the sheaves $\mathcal{F}_ j$ glue to a quasi-coherent sheaf $\mathcal{F}$ as desired. We still have to verify that the canonical descent datum relative to $\mathcal{U}$ associated to $\mathcal{F}$ is isomorphic to the descent datum we started out with. This verification is omitted. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: