Lemma 94.13.1. Let S be a scheme contained in \mathit{Sch}_{fppf}.
A category fibred in groupoids p : \mathcal{X} \to (\mathit{Sch}/S)_{fppf} which is representable by an algebraic space is a Deligne-Mumford stack.
If F is an algebraic space over S, then the associated category fibred in groupoids p : \mathcal{S}_ F \to (\mathit{Sch}/S)_{fppf} is a Deligne-Mumford stack.
If X \in \mathop{\mathrm{Ob}}\nolimits ((\mathit{Sch}/S)_{fppf}), then (\mathit{Sch}/X)_{fppf} \to (\mathit{Sch}/S)_{fppf} is a Deligne-Mumford stack.
Comments (0)
There are also: