The Stacks project

Lemma 90.13.2. Let $S$ be a scheme contained in $\mathit{Sch}_{fppf}$. Let $\mathcal{X}$ be an algebraic stack over $S$. The following are equivalent

  1. $\mathcal{X}$ is a Deligne-Mumford stack and is a stack in setoids,

  2. $\mathcal{X}$ is a Deligne-Mumford stack such that the canonical $1$-morphism $\mathcal{I}_\mathcal {X} \to \mathcal{X}$ is an equivalence, and

  3. $\mathcal{X}$ is representable by an algebraic space.

Proof. The equivalence of (1) and (2) follows from Stacks, Lemma 8.7.2. The implication (3) $\Rightarrow $ (1) follows from Lemma 90.13.1. Finally, assume (1). By Stacks, Lemma 8.6.3 there exists a sheaf $F$ on $(\mathit{Sch}/S)_{fppf}$ and an equivalence $j : \mathcal{X} \to \mathcal{S}_ F$. By Lemma 90.9.5 the fact that $\Delta _\mathcal {X}$ is representable by algebraic spaces, means that $\Delta _ F : F \to F \times F$ is representable by algebraic spaces. Let $U$ be a scheme, and let $x : (\mathit{Sch}/U)_{fppf} \to \mathcal{X}$ be a surjective ├ętale morphism. The composition $j \circ x : (\mathit{Sch}/U)_{fppf} \to \mathcal{S}_ F$ corresponds to a morphism $h_ U \to F$ of sheaves. By Bootstrap, Lemma 76.5.1 this morphism is representable by algebraic spaces. Hence by Lemma 90.10.4 we conclude that $h_ U \to F$ is surjective and ├ętale. Finally, we apply Bootstrap, Theorem 76.6.1 to see that $F$ is an algebraic space. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 045H. Beware of the difference between the letter 'O' and the digit '0'.