Lemma 94.10.4. Let S be an object of \mathit{Sch}_{fppf}. Let \mathcal{P} be as in Definition 94.10.1. Let f : \mathcal{X} \to \mathcal{Y} be a 1-morphism of categories fibred in setoids over (\mathit{Sch}/S)_{fppf}. Let F, resp. G be the presheaf which to T associates the set of isomorphism classes of objects of \mathcal{X}_ T, resp. \mathcal{Y}_ T. Let a : F \to G be the map of presheaves corresponding to f. Then a has \mathcal{P} if and only if f has \mathcal{P}.
Proof. The lemma makes sense by Lemma 94.9.6. The lemma follows on combining Lemmas 94.10.2 and 94.10.3. \square
Comments (0)