Lemma 92.10.5. Let $S$ be a scheme contained in $\mathit{Sch}_{fppf}$. Let $\mathcal{X}$, $\mathcal{Y}$, $\mathcal{Z}$ be categories fibred in groupoids over $(\mathit{Sch}/S)_{fppf}$. Let $\mathcal{P}$ be a property as in Definition 92.10.1 which is stable under composition. Let $f : \mathcal{X} \to \mathcal{Y}$, $g : \mathcal{Y} \to \mathcal{Z}$ be $1$-morphisms which are representable by algebraic spaces. If $f$ and $g$ have property $\mathcal{P}$ so does $g \circ f : \mathcal{X} \to \mathcal{Z}$.

**Proof.**
Note that the lemma makes sense by Lemma 92.9.9. Proof omitted.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)