Lemma 93.9.5. Let $S$ be an object of $\mathit{Sch}_{fppf}$. Let $a : F \to G$ be a map of presheaves of sets on $(\mathit{Sch}/S)_{fppf}$. Denote $a' : \mathcal{S}_ F \to \mathcal{S}_ G$ the associated map of categories fibred in sets. Then $a$ is representable by algebraic spaces (see Bootstrap, Definition 79.3.1) if and only if $a'$ is representable by algebraic spaces.

**Proof.**
Omitted.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: