## 93.9 Morphisms representable by algebraic spaces

In analogy with Categories, Definition 4.42.3 we make the following definition.

Definition 93.9.1. Let $S$ be a scheme contained in $\mathit{Sch}_{fppf}$. A $1$-morphism $f : \mathcal{X} \to \mathcal{Y}$ of categories fibred in groupoids over $(\mathit{Sch}/S)_{fppf}$ is called representable by algebraic spaces if for any $U \in \mathop{\mathrm{Ob}}\nolimits ((\mathit{Sch}/S)_{fppf})$ and any $y : (\mathit{Sch}/U)_{fppf} \to \mathcal{Y}$ the category fibred in groupoids

$(\mathit{Sch}/U)_{fppf} \times _{y, \mathcal{Y}} \mathcal{X}$

over $(\mathit{Sch}/U)_{fppf}$ is representable by an algebraic space over $U$.

Choose an algebraic space $F_ y$ over $U$ which represents $(\mathit{Sch}/U)_{fppf} \times _{y, \mathcal{Y}} \mathcal{X}$. We may think of $F_ y$ as an algebraic space over $S$ which comes equipped with a canonical morphism $f_ y : F_ y \to U$ over $S$, see Spaces, Section 64.16. Here is the diagram

93.9.1.1
$$\label{algebraic-equation-representable-by-algebraic-spaces} \vcenter { \xymatrix{ F_ y \ar[d]_{f_ y} & (\mathit{Sch}/U)_{fppf} \times _{y, \mathcal{Y}} \mathcal{X} \ar@{~>}[l] \ar[d]_{\text{pr}_0} \ar[r]_-{\text{pr}_1} & \mathcal{X} \ar[d]^ f \\ U & (\mathit{Sch}/U)_{fppf} \ar@{~>}[l] \ar[r]^-y & \mathcal{Y} } }$$

where the squiggly arrows represent the construction which associates to a stack fibred in setoids its associated sheaf of isomorphism classes of objects. The right square is $2$-commutative, and is a $2$-fibre product square.

Here is the analogue of Categories, Lemma 4.42.5.

Lemma 93.9.2. Let $S$ be a scheme contained in $\mathit{Sch}_{fppf}$. Let $f : \mathcal{X} \to \mathcal{Y}$ be a $1$-morphism of categories fibred in groupoids over $(\mathit{Sch}/S)_{fppf}$. The following are necessary and sufficient conditions for $f$ to be representable by algebraic spaces:

1. for each scheme $U/S$ the functor $f_ U : \mathcal{X}_ U \longrightarrow \mathcal{Y}_ U$ between fibre categories is faithful, and

2. for each $U$ and each $y \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{Y}_ U)$ the presheaf

$(h : V \to U) \longmapsto \{ (x, \phi ) \mid x \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{X}_ V), \phi : h^*y \to f(x)\} /\cong$

is an algebraic space over $U$.

Here we have made a choice of pullbacks for $\mathcal{Y}$.

Proof. This follows from the description of fibre categories of the $2$-fibre products $(\mathit{Sch}/U)_{fppf} \times _{y, \mathcal{Y}} \mathcal{X}$ in Categories, Lemma 4.42.1 combined with Lemma 93.8.2. $\square$

Here are some lemmas about this notion that work in great generality.

Lemma 93.9.3. Let $S$ be an object of $\mathit{Sch}_{fppf}$. Consider a $2$-commutative diagram

$\xymatrix{ \mathcal{X}' \ar[r] \ar[d]_{f'} & \mathcal{X} \ar[d]^ f \\ \mathcal{Y}' \ar[r] & \mathcal{Y} }$

of $1$-morphisms of categories fibred in groupoids over $(\mathit{Sch}/S)_{fppf}$. Assume the horizontal arrows are equivalences. Then $f$ is representable by algebraic spaces if and only if $f'$ is representable by algebraic spaces.

Proof. Omitted. $\square$

Lemma 93.9.4. Let $S$ be an object of $\mathit{Sch}_{fppf}$. Let $f : \mathcal{X} \to \mathcal{Y}$ be a $1$-morphism of categories fibred in groupoids over $S$. If $\mathcal{X}$ and $\mathcal{Y}$ are representable by algebraic spaces over $S$, then the $1$-morphism $f$ is representable by algebraic spaces.

Proof. Omitted. This relies only on the fact that the category of algebraic spaces over $S$ has fibre products, see Spaces, Lemma 64.7.3. $\square$

Lemma 93.9.5. Let $S$ be an object of $\mathit{Sch}_{fppf}$. Let $a : F \to G$ be a map of presheaves of sets on $(\mathit{Sch}/S)_{fppf}$. Denote $a' : \mathcal{S}_ F \to \mathcal{S}_ G$ the associated map of categories fibred in sets. Then $a$ is representable by algebraic spaces (see Bootstrap, Definition 79.3.1) if and only if $a'$ is representable by algebraic spaces.

Proof. Omitted. $\square$

Lemma 93.9.6. Let $S$ be an object of $\mathit{Sch}_{fppf}$. Let $f : \mathcal{X} \to \mathcal{Y}$ be a $1$-morphism of categories fibred in setoids over $(\mathit{Sch}/S)_{fppf}$. Let $F$, resp. $G$ be the presheaf which to $T$ associates the set of isomorphism classes of objects of $\mathcal{X}_ T$, resp. $\mathcal{Y}_ T$. Let $a : F \to G$ be the map of presheaves corresponding to $f$. Then $a$ is representable by algebraic spaces (see Bootstrap, Definition 79.3.1) if and only if $f$ is representable by algebraic spaces.

Proof. Omitted. Hint: Combine Lemmas 93.9.3 and 93.9.5. $\square$

Lemma 93.9.7. Let $S$ be a scheme contained in $\mathit{Sch}_{fppf}$. Let $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$ be categories fibred in groupoids over $(\mathit{Sch}/S)_{fppf}$. Let $f : \mathcal{X} \to \mathcal{Y}$ be a $1$-morphism representable by algebraic spaces. Let $g : \mathcal{Z} \to \mathcal{Y}$ be any $1$-morphism. Consider the fibre product diagram

$\xymatrix{ \mathcal{Z} \times _{g, \mathcal{Y}, f} \mathcal{X} \ar[r]_-{g'} \ar[d]_{f'} & \mathcal{X} \ar[d]^ f \\ \mathcal{Z} \ar[r]^ g & \mathcal{Y} }$

Then the base change $f'$ is a $1$-morphism representable by algebraic spaces.

Proof. This is formal. $\square$

Lemma 93.9.8. Let $S$ be a scheme contained in $\mathit{Sch}_{fppf}$. Let $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$ be categories fibred in groupoids over $(\mathit{Sch}/S)_{fppf}$ Let $f : \mathcal{X} \to \mathcal{Y}$, $g : \mathcal{Z} \to \mathcal{Y}$ be $1$-morphisms. Assume

1. $f$ is representable by algebraic spaces, and

2. $\mathcal{Z}$ is representable by an algebraic space over $S$.

Then the $2$-fibre product $\mathcal{Z} \times _{g, \mathcal{Y}, f} \mathcal{X}$ is representable by an algebraic space.

Proof. This is a reformulation of Bootstrap, Lemma 79.3.6. First note that $\mathcal{Z} \times _{g, \mathcal{Y}, f} \mathcal{X}$ is fibred in setoids over $(\mathit{Sch}/S)_{fppf}$. Hence it is equivalent to $\mathcal{S}_ F$ for some presheaf $F$ on $(\mathit{Sch}/S)_{fppf}$, see Categories, Lemma 4.39.5. Moreover, let $G$ be an algebraic space which represents $\mathcal{Z}$. The $1$-morphism $\mathcal{Z} \times _{g, \mathcal{Y}, f} \mathcal{X} \to \mathcal{Z}$ is representable by algebraic spaces by Lemma 93.9.7. And $\mathcal{Z} \times _{g, \mathcal{Y}, f} \mathcal{X} \to \mathcal{Z}$ corresponds to a morphism $F \to G$ by Categories, Lemma 4.39.6. Then $F \to G$ is representable by algebraic spaces by Lemma 93.9.6. Hence Bootstrap, Lemma 79.3.6 implies that $F$ is an algebraic space as desired. $\square$

Let $S$, $\mathcal{X}$, $\mathcal{Y}$, $\mathcal{Z}$, $f$, $g$ be as in Lemma 93.9.8. Let $F$ and $G$ be algebraic spaces over $S$ such that $F$ represents $\mathcal{Z} \times _{g, \mathcal{Y}, f} \mathcal{X}$ and $G$ represents $\mathcal{Z}$. The $1$-morphism $f' : \mathcal{Z} \times _{g, \mathcal{Y}, f} \mathcal{X} \to \mathcal{Z}$ corresponds to a morphism $f' : F \to G$ of algebraic spaces by (93.8.2.1). Thus we have the following diagram

93.9.8.1
$$\label{algebraic-equation-representable-by-algebraic-spaces-on-space} \vcenter { \xymatrix{ F \ar[d]_{f'} & \mathcal{Z} \times _{g, \mathcal{Y}, f} \mathcal{X} \ar@{~>}[l] \ar[d] \ar[r] & \mathcal{X} \ar[d]^ f \\ G & \mathcal{Z} \ar@{~>}[l] \ar[r]^-g & \mathcal{Y} } }$$

where the squiggly arrows represent the construction which associates to a stack fibred in setoids its associated sheaf of isomorphism classes of objects.

Lemma 93.9.9. Let $S$ be a scheme contained in $\mathit{Sch}_{fppf}$. Let $\mathcal{X}, \mathcal{Y}, \mathcal{Z}$ be categories fibred in groupoids over $(\mathit{Sch}/S)_{fppf}$. If $f : \mathcal{X} \to \mathcal{Y}$, $g : \mathcal{Y} \to \mathcal{Z}$ are $1$-morphisms representable by algebraic spaces, then

$g \circ f : \mathcal{X} \longrightarrow \mathcal{Z}$

is a $1$-morphism representable by algebraic spaces.

Proof. This follows from Lemma 93.9.8. Details omitted. $\square$

Lemma 93.9.10. Let $S$ be a scheme contained in $\mathit{Sch}_{fppf}$. Let $\mathcal{X}_ i, \mathcal{Y}_ i$ be categories fibred in groupoids over $(\mathit{Sch}/S)_{fppf}$, $i = 1, 2$. Let $f_ i : \mathcal{X}_ i \to \mathcal{Y}_ i$, $i = 1, 2$ be $1$-morphisms representable by algebraic spaces. Then

$f_1 \times f_2 : \mathcal{X}_1 \times \mathcal{X}_2 \longrightarrow \mathcal{Y}_1 \times \mathcal{Y}_2$

is a $1$-morphism representable by algebraic spaces.

Proof. Write $f_1 \times f_2$ as the composition $\mathcal{X}_1 \times \mathcal{X}_2 \to \mathcal{Y}_1 \times \mathcal{X}_2 \to \mathcal{Y}_1 \times \mathcal{Y}_2$. The first arrow is the base change of $f_1$ by the map $\mathcal{Y}_1 \times \mathcal{X}_2 \to \mathcal{Y}_1$, and the second arrow is the base change of $f_2$ by the map $\mathcal{Y}_1 \times \mathcal{Y}_2 \to \mathcal{Y}_2$. Hence this lemma is a formal consequence of Lemmas 93.9.9 and 93.9.7. $\square$

Lemma 93.9.11. Let $S$ be a scheme contained in $\mathit{Sch}_{fppf}$. Let $\mathcal{X} \to \mathcal{Z}$ and $\mathcal{Y} \to \mathcal{Z}$ be $1$-morphisms of categories fibred in groupoids over $(\mathit{Sch}/S)_{fppf}$. If $\mathcal{X} \to \mathcal{Z}$ is representable by algebraic spaces and $\mathcal{Y}$ is a stack in groupoids, then $\mathcal{X} \times _\mathcal {Z} \mathcal{Y}$ is a stack in groupoids.

Proof. The property of a morphism being representable by algebraic spaces is preserved under base-change (Lemma 93.9.8), and so, passing to the base-change $\mathcal{X} \times _\mathcal {Z} \mathcal{Y}$ over $\mathcal{Y}$, we may reduce to the case of a morphism of categories fibred in groupoids $\mathcal{X} \to \mathcal{Y}$ which is representable by algebraic spaces, and whose target is a stack in groupoids; our goal is then to prove that $\mathcal{X}$ is also a stack in groupoids. This follows from Stacks, Lemma 8.6.11 whose assumptions are satisfied as a result of Lemma 93.9.2. $\square$

## Comments (2)

Comment #2248 by David Hansen on

The use of "middle square" in reference to part of diagram 77.9.8.1 is confusing (cf. second line below the diagram) - I only see left and right squares. :)

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 04SX. Beware of the difference between the letter 'O' and the digit '0'.