Lemma 94.9.7. Let S be a scheme contained in \mathit{Sch}_{fppf}. Let \mathcal{X}, \mathcal{Y}, \mathcal{Z} be categories fibred in groupoids over (\mathit{Sch}/S)_{fppf}. Let f : \mathcal{X} \to \mathcal{Y} be a 1-morphism representable by algebraic spaces. Let g : \mathcal{Z} \to \mathcal{Y} be any 1-morphism. Consider the fibre product diagram
Then the base change f' is a 1-morphism representable by algebraic spaces.
Comments (0)
There are also: