Lemma 94.9.8. Let S be a scheme contained in \mathit{Sch}_{fppf}. Let \mathcal{X}, \mathcal{Y}, \mathcal{Z} be categories fibred in groupoids over (\mathit{Sch}/S)_{fppf} Let f : \mathcal{X} \to \mathcal{Y}, g : \mathcal{Z} \to \mathcal{Y} be 1-morphisms. Assume
f is representable by algebraic spaces, and
\mathcal{Z} is representable by an algebraic space over S.
Then the 2-fibre product \mathcal{Z} \times _{g, \mathcal{Y}, f} \mathcal{X} is representable by an algebraic space.
Proof.
This is a reformulation of Bootstrap, Lemma 80.3.6. First note that \mathcal{Z} \times _{g, \mathcal{Y}, f} \mathcal{X} is fibred in setoids over (\mathit{Sch}/S)_{fppf}. Hence it is equivalent to \mathcal{S}_ F for some presheaf F on (\mathit{Sch}/S)_{fppf}, see Categories, Lemma 4.39.5. Moreover, let G be an algebraic space which represents \mathcal{Z}. The 1-morphism \mathcal{Z} \times _{g, \mathcal{Y}, f} \mathcal{X} \to \mathcal{Z} is representable by algebraic spaces by Lemma 94.9.7. And \mathcal{Z} \times _{g, \mathcal{Y}, f} \mathcal{X} \to \mathcal{Z} corresponds to a morphism F \to G by Categories, Lemma 4.39.6. Then F \to G is representable by algebraic spaces by Lemma 94.9.6. Hence Bootstrap, Lemma 80.3.6 implies that F is an algebraic space as desired.
\square
Comments (0)
There are also: