Lemma 94.9.3. Let S be an object of \mathit{Sch}_{fppf}. Consider a 2-commutative diagram
\xymatrix{ \mathcal{X}' \ar[r] \ar[d]_{f'} & \mathcal{X} \ar[d]^ f \\ \mathcal{Y}' \ar[r] & \mathcal{Y} }
of 1-morphisms of categories fibred in groupoids over (\mathit{Sch}/S)_{fppf}. Assume the horizontal arrows are equivalences. Then f is representable by algebraic spaces if and only if f' is representable by algebraic spaces.
Comments (0)
There are also: