Lemma 92.9.11. Let $S$ be a scheme contained in $\mathit{Sch}_{fppf}$. Let $\mathcal{X} \to \mathcal{Z}$ and $\mathcal{Y} \to \mathcal{Z}$ be $1$-morphisms of categories fibred in groupoids over $(\mathit{Sch}/S)_{fppf}$. If $\mathcal{X} \to \mathcal{Z}$ is representable by algebraic spaces and $\mathcal{Y}$ is a stack in groupoids, then $\mathcal{X} \times _\mathcal {Z} \mathcal{Y}$ is a stack in groupoids.

Lemma in an email of Matthew Emerton dated June 15, 2016

**Proof.**
The property of a morphism being representable by algebraic spaces is preserved under base-change (Lemma 92.9.8), and so, passing to the base-change $\mathcal{X} \times _\mathcal {Z} \mathcal{Y}$ over $\mathcal{Y}$, we may reduce to the case of a morphism of categories fibred in groupoids $\mathcal{X} \to \mathcal{Y}$ which is representable by algebraic spaces, and whose target is a stack in groupoids; our goal is then to prove that $\mathcal{X}$ is also a stack in groupoids. This follows from Stacks, Lemma 8.6.11 whose assumptions are satisfied as a result of Lemma 92.9.2.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: