Lemma 94.9.10. Let S be a scheme contained in \mathit{Sch}_{fppf}. Let \mathcal{X}_ i, \mathcal{Y}_ i be categories fibred in groupoids over (\mathit{Sch}/S)_{fppf}, i = 1, 2. Let f_ i : \mathcal{X}_ i \to \mathcal{Y}_ i, i = 1, 2 be 1-morphisms representable by algebraic spaces. Then
f_1 \times f_2 : \mathcal{X}_1 \times \mathcal{X}_2 \longrightarrow \mathcal{Y}_1 \times \mathcal{Y}_2
is a 1-morphism representable by algebraic spaces.
Proof.
Write f_1 \times f_2 as the composition \mathcal{X}_1 \times \mathcal{X}_2 \to \mathcal{Y}_1 \times \mathcal{X}_2 \to \mathcal{Y}_1 \times \mathcal{Y}_2. The first arrow is the base change of f_1 by the map \mathcal{Y}_1 \times \mathcal{X}_2 \to \mathcal{Y}_1, and the second arrow is the base change of f_2 by the map \mathcal{Y}_1 \times \mathcal{Y}_2 \to \mathcal{Y}_2. Hence this lemma is a formal consequence of Lemmas 94.9.9 and 94.9.7.
\square
Comments (0)
There are also: