Lemma 78.20.3. Assumptions and notation as in Lemma 78.20.2. There exists a canonical $2$-morphism $\alpha : \pi \circ s \to \pi \circ t$ making the diagram
$2$-commutative.
Lemma 78.20.3. Assumptions and notation as in Lemma 78.20.2. There exists a canonical $2$-morphism $\alpha : \pi \circ s \to \pi \circ t$ making the diagram
$2$-commutative.
Proof. Let $S'$ be a scheme over $S$. Let $r : S' \to R$ be a morphism over $S$. Then $r \in R(S')$ is an isomorphism between the objects $s \circ r, t \circ r \in U(S')$. Moreover, this construction is compatible with pullbacks. This gives a canonical $2$-morphism $\alpha _ p : \pi _ p \circ s \to \pi _ p \circ t$ where $\pi _ p : \mathcal{S}_ U \to [U/_{\! p}R]$ is as in the proof of Lemma 78.20.2. Thus even the diagram
is $2$-commutative. Thus a fortiori the diagram of the lemma is $2$-commutative. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: