Processing math: 100%

The Stacks project

Definition 37.22.1. Let f : X \to Y be a morphism of schemes. Assume that all the fibres X_ y are locally Noetherian schemes.

  1. Let x \in X, and y = f(x). We say that f is Cohen-Macaulay at x if f is flat at x, and the local ring of the scheme X_ y at x is Cohen-Macaulay.

  2. We say f is a Cohen-Macaulay morphism if f is Cohen-Macaulay at every point of X.


Comments (0)

There are also:

  • 4 comment(s) on Section 37.22: Cohen-Macaulay morphisms

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.