Lemma 78.21.1. Let S be a scheme. Let B be an algebraic space over S. Let f : (U, R, s, t, c) \to (U', R', s', t', c') be a morphism of groupoids in algebraic spaces over B. Then f induces a canonical 1-morphism of quotient stacks
[f] : [U/R] \longrightarrow [U'/R'].
Proof. Denote [U/_{\! p}R] and [U'/_{\! p}R'] the categories fibred in groupoids over the base site (\mathit{Sch}/S)_{fppf} associated to the functors (78.20.0.1). It is clear that f defines a 1-morphism [U/_{\! p}R] \to [U'/_{\! p}R'] which we can compose with the stackyfication functor for [U'/R'] to get [U/_{\! p}R] \to [U'/R']. Then, by the universal property of the stackyfication functor [U/_{\! p}R] \to [U/R], see Stacks, Lemma 8.9.2 we get [U/R] \to [U'/R']. \square
Comments (0)