Lemma 29.31.4. Let

be a fibre product diagram in the category of schemes with $i$, $i'$ immersions. Then the canonical map $f^*\mathcal{C}_{Z'/X'} \to \mathcal{C}_{Z/X}$ of Lemma 29.31.3 is surjective. If $g$ is flat, then it is an isomorphism.

Lemma 29.31.4. Let

\[ \xymatrix{ Z \ar[r]_ i \ar[d]_ f & X \ar[d]^ g \\ Z' \ar[r]^{i'} & X' } \]

be a fibre product diagram in the category of schemes with $i$, $i'$ immersions. Then the canonical map $f^*\mathcal{C}_{Z'/X'} \to \mathcal{C}_{Z/X}$ of Lemma 29.31.3 is surjective. If $g$ is flat, then it is an isomorphism.

**Proof.**
Let $R' \to R$ be a ring map, and $I' \subset R'$ an ideal. Set $I = I'R$. Then $I'/(I')^2 \otimes _{R'} R \to I/I^2$ is surjective. If $R' \to R$ is flat, then $I = I' \otimes _{R'} R$ and $I^2 = (I')^2 \otimes _{R'} R$ and we see the map is an isomorphism.
$\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)