The Stacks project

Definition 83.4.4. Let $S$ be a scheme, and let $B$ be an algebraic space over $S$. Let $\mathcal{C}$ be a full subcategory of the category of algebraic spaces over $B$ closed under fibre products. Let $j = (t, s) : R \to U \times _ B U$ be pre-relation in $\mathcal{C}$, and let $U \to X$ be an $R$-invariant morphism with $X \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$.

  1. We say $U \to X$ is a universal categorical quotient in $\mathcal{C}$ if for every morphism $X' \to X$ in $\mathcal{C}$ the morphism $U' = X' \times _ X U \to X'$ is the categorical quotient in $\mathcal{C}$ of the base change $j' : R' \to U'$ of $j$.

  2. We say $U \to X$ is a uniform categorical quotient in $\mathcal{C}$ if for every flat morphism $X' \to X$ in $\mathcal{C}$ the morphism $U' = X' \times _ X U \to X'$ is the categorical quotient in $\mathcal{C}$ of the base change $j' : R' \to U'$ of $j$.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 048L. Beware of the difference between the letter 'O' and the digit '0'.