Lemma 83.5.3. In the situation of Definition 83.5.1. Let $\phi : U \to X$ be an $R$-invariant morphism of algebraic spaces over $B$. Then $|\phi | : |U| \to |X|$ is constant on the orbits.
Proof. To see this we just have to show that $\phi (u) = \phi (u')$ for all $u, u' \in |U|$ such that there exists an $r \in |R|$ such that $s(r) = u$ and $t(r) = u'$. And this is clear since $\phi $ equalizes $s$ and $t$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)