Example 29.9.5. Bijectivity is not stable under base change, and so neither is injectivity. For example consider the bijection \mathop{\mathrm{Spec}}(\mathbf{C}) \to \mathop{\mathrm{Spec}}(\mathbf{R}). The base change \mathop{\mathrm{Spec}}(\mathbf{C} \otimes _{\mathbf{R}} \mathbf{C}) \to \mathop{\mathrm{Spec}}(\mathbf{C}) is not injective, since there is an isomorphism \mathbf{C} \otimes _{\mathbf{R}} \mathbf{C} \cong \mathbf{C} \times \mathbf{C} (the decomposition comes from the idempotent \frac{1 \otimes 1 + i \otimes i}{2}) and hence \mathop{\mathrm{Spec}}(\mathbf{C} \otimes _{\mathbf{R}} \mathbf{C}) has two points.
Comments (0)