Loading web-font TeX/Caligraphic/Regular

The Stacks project

Definition 7.42.3. Let \mathcal{C}, \mathcal{D} be sites. Let u : \mathcal{C} \to \mathcal{D} be a functor. We say u is almost cocontinuous if for every object U of \mathcal{C} and every covering \{ V_ j \to u(U)\} _{j \in J} there exists a covering \{ U_ i \to U\} _{i \in I} in \mathcal{C} such that for each i in I we have at least one of the following two conditions

  1. u(U_ i) is sheaf theoretically empty, or

  2. the morphism u(U_ i) \to u(U) factors through V_ j for some j \in J.


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.