The Stacks project

Lemma 7.42.4. Let $\mathcal{C}$, $\mathcal{D}$ be sites. Let $u : \mathcal{C} \to \mathcal{D}$ be a functor. Assume that $u$ is continuous and almost cocontinuous. Let $\mathcal{G}$ be a presheaf on $\mathcal{D}$ such that $\mathcal{G}(V)$ is a singleton whenever $V$ is sheaf theoretically empty. Then $(u^ p\mathcal{G})^\# = u^ p(\mathcal{G}^\# )$.

Proof. Let $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$. We have to show that $(u^ p\mathcal{G})^\# (U) = u^ p(\mathcal{G}^\# )(U)$. It suffices to show that $(u^ p\mathcal{G})^+(U) = u^ p(\mathcal{G}^+)(U)$ since $\mathcal{G}^+$ is another presheaf for which the assumption of the lemma holds. We have

\[ u^ p(\mathcal{G}^+)(U) = \mathcal{G}^+(u(U)) = \mathop{\mathrm{colim}}\nolimits _\mathcal {V} \check H^0(\mathcal{V}, \mathcal{G}) \]

where the colimit is over the coverings $\mathcal{V}$ of $u(U)$ in $\mathcal{D}$. On the other hand, we see that

\[ u^ p(\mathcal{G})^+(U) = \mathop{\mathrm{colim}}\nolimits _\mathcal {U} \check H^0(u(\mathcal{U}), \mathcal{G}) \]

where the colimit is over the category of coverings $\mathcal{U} = \{ U_ i \to U\} _{i \in I}$ of $U$ in $\mathcal{C}$ and $u(\mathcal{U}) = \{ u(U_ i) \to u(U)\} _{i \in I}$. The condition that $u$ is continuous means that each $u(\mathcal{U})$ is a covering. Write $I = I_1 \amalg I_2$, where

\[ I_2 = \{ i \in I \mid u(U_ i)\text{ is sheaf theoretically empty}\} \]

Then $u(\mathcal{U})' = \{ u(U_ i) \to u(U)\} _{i \in I_1}$ is still a covering of because each of the other pieces can be covered by the empty family and hence can be dropped by Axiom (2) of Definition 7.6.2. Moreover, $\check H^0(u(\mathcal{U}), \mathcal{G}) = \check H^0(u(\mathcal{U})', \mathcal{G})$ by our assumption on $\mathcal{G}$. Finally, the condition that $u$ is almost cocontinuous implies that for every covering $\mathcal{V}$ of $u(U)$ there exists a covering $\mathcal{U}$ of $U$ such that $u(\mathcal{U})'$ refines $\mathcal{V}$. It follows that the two colimits displayed above have the same value as desired. $\square$

Comments (2)

Comment #876 by Adeel on

Why is ? Are you maybe assuming that is sheaf-theoretically empty with respect to the topology on ?

Comment #883 by Adeel on

Sorry this is clear, I had misunderstood the assumption on .

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 04B8. Beware of the difference between the letter 'O' and the digit '0'.