Lemma 37.9.10. Consider a commutative diagram of first order thickenings
\vcenter { \xymatrix{ (T_2 \subset T_2') \ar[d]_{(h, h')} \ar[rr]_{(a_2, a_2')} & & (X_2 \subset X_2') \ar[d]^{(f, f')} \\ (T_1 \subset T_1') \ar[rr]^{(a_1, a_1')} & & (X_1 \subset X_1') } } \quad \begin{matrix} \text{and a commutative}
\\ \text{diagram of schemes}
\end{matrix} \quad \vcenter { \xymatrix{ X_2' \ar[r] \ar[d] & S_2 \ar[d] \\ X_1' \ar[r] & S_1 } }
with X_2 \to X_1 and S_2 \to S_1 étale. For any \mathcal{O}_{T_1}-linear map \theta _1 : a_1^*\Omega _{X_1/S_1} \to \mathcal{C}_{T_1/T'_1} let \theta _2 be the composition
\xymatrix{ a_2^*\Omega _{X_2/S_2} \ar@{=}[r] & h^*a_1^*\Omega _{X_1/S_1} \ar[r]^-{h^*\theta _1} & h^*\mathcal{C}_{T_1/T'_1} \ar[r] & \mathcal{C}_{T_2/T'_2} }
(equality sign is explained in the proof). Then the diagram
\xymatrix{ T_2' \ar[rr]_{\theta _2 \cdot a_2'} \ar[d] & & X'_2 \ar[d] \\ T_1' \ar[rr]^{\theta _1 \cdot a_1'} & & X'_1 }
commutes where the actions \theta _2 \cdot a_2' and \theta _1 \cdot a_1' are as in Remark 37.9.3.
Proof.
The equality sign comes from the identification f^*\Omega _{X_1/S_1} = \Omega _{X_2/S_2} of Lemma 37.9.9. Namely, using this we have a_2^*\Omega _{X_2/S_2} = a_2^*f^*\Omega _{X_1/S_1} = h^*a_1^*\Omega _{X_1/S_1} because f \circ a_2 = a_1 \circ h. Having said this, the commutativity of the diagram may be checked on affine opens. Hence we may assume the schemes in the initial big diagram are affine. Thus we obtain commutative diagrams
\vcenter { \xymatrix{ (B'_2, I_2) & & (A'_2, J_2) \ar[ll]^{a_2'} \\ (B'_1, I_1) \ar[u]^{h'} & & (A'_1, J_1) \ar[ll]_{a_1'} \ar[u]_{f'} } } \quad \text{and}\quad \vcenter { \xymatrix{ A'_2 & & R_2 \ar[ll] \\ A'_1 \ar[u] & & R_1 \ar[ll] \ar[u] } }
The notation signifies that I_1, I_2, J_1, J_2 are ideals of square zero and maps of pairs are ring maps sending ideals into ideals. Set A_1 = A'_1/J_1, A_2 = A'_2/J_2, B_1 = B'_1/I_1, and B_2 = B'_2/I_2. We are given that
A_2 \otimes _{A_1} \Omega _{A_1/R_1} \longrightarrow \Omega _{A_2/R_2}
is an isomorphism. Then \theta _1 : B_1 \otimes _{A_1} \Omega _{A_1/R_1} \to I_1 is B_1-linear. This gives an R_1-derivation D_1 = \theta _1 \circ \text{d}_{A_1/R_1} : A_1 \to I_1. In a similar way we see that \theta _2 : B_2 \otimes _{A_2} \Omega _{A_2/R_2} \to I_2 gives rise to a R_2-derivation D_2 = \theta _2 \circ \text{d}_{A_2/R_2} : A_2 \to I_2. The construction of \theta _2 implies the following compatibility between \theta _1 and \theta _2: for every x \in A_1 we have
h'(D_1(x)) = D_2(f'(x))
as elements of I_2. We may view D_1 as a map A'_1 \to B'_1 using A'_1 \to A_1 \xrightarrow {D_1} I_1 \to B_1 similarly we may view D_2 as a map A'_2 \to B'_2. Then the displayed equality holds for x \in A'_1. By the construction of the action in Lemma 37.9.2 and Remark 37.9.3 we know that \theta _1 \cdot a_1' corresponds to the ring map a_1' + D_1 : A'_1 \to B'_1 and \theta _2 \cdot a_2' corresponds to the ring map a_2' + D_2 : A'_2 \to B'_2. By the displayed equality we obtain that h' \circ (a_1' + D_1) = (a_2' + D_2) \circ f' as desired.
\square
Comments (0)