The Stacks project

Remark 59.48.7. In Lemma 59.48.6 the case $\tau = fppf$ is missing. The reason is that given a ring $A$, an ideal $I$ and a faithfully flat, finitely presented ring map $A/I \to \overline{B}$, there is no reason to think that one can find any flat finitely presented ring map $A \to B$ with $B/IB \not= 0$ such that $A/I \to B/IB$ factors through $\overline{B}$. Hence the proof of Lemma 59.48.5 does not work for the fppf topology. In fact it is likely false that $f_{big, *} : \textit{Ab}((\mathit{Sch}/X)_{fppf}) \to \textit{Ab}((\mathit{Sch}/Y)_{fppf})$ is exact when $f$ is a closed immersion. If you know an example, please email stacks.project@gmail.com.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 04C5. Beware of the difference between the letter 'O' and the digit '0'.